3,935 research outputs found

    Automatic Computation of Feynman Diagrams

    Full text link
    Quantum corrections significantly influence the quantities observed in modern particle physics. The corresponding theoretical computations are usually quite lengthy which makes their automation mandatory. This review reports on the current status of automatic calculation of Feynman diagrams in particle physics. The most important theoretical techniques are introduced and their usefulness is demonstrated with the help of simple examples. A survey over frequently used programs and packages is provided, discussing their abilities and fields of applications. Subsequently, some powerful packages which have already been applied to important physical problems are described in more detail. The review closes with the discussion of a few typical applications for the automated computation of Feynman diagrams, addressing current physical questions like properties of the ZZ and Higgs boson, four-loop corrections to renormalization group functions and two-loop electroweak corrections.Comment: Latex, 62 pages. Typos corrected, references updated and some comments added. Vertical offset changed. The complete paper is also available via anonymous ftp at ftp://ttpux2.physik.uni-karlsruhe.de/ttp98/ttp98-41/ or via www at http://www-ttp.physik.uni-karlsruhe.de/Preprints

    The computational challenge of enumerating high-dimensional rook walks

    Get PDF
    We provide guessed recurrence equations for the counting sequences of rook paths on d-dimensional chess boards starting at (0..0) and ending at (n..n), where d=2,3,...,12. Our recurrences suggest refined asymptotic formulas of these sequences. Rigorous proofs of the guessed recurrences as well as the suggested asymptotic forms are posed as challenges to the reader

    Track 3: Computations in theoretical physics -- techniques and methods

    Full text link
    Here, we attempt to summarize the activities of Track 3 of the 17th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2016).Comment: 10 pages, 3 figures, to appear in the proceedings of ACAT 201

    Report on "Geometry and representation theory of tensors for computer science, statistics and other areas."

    Full text link
    This is a technical report on the proceedings of the workshop held July 21 to July 25, 2008 at the American Institute of Mathematics, Palo Alto, California, organized by Joseph Landsberg, Lek-Heng Lim, Jason Morton, and Jerzy Weyman. We include a list of open problems coming from applications in 4 different areas: signal processing, the Mulmuley-Sohoni approach to P vs. NP, matchgates and holographic algorithms, and entanglement and quantum information theory. We emphasize the interactions between geometry and representation theory and these applied areas

    On Characterizing the Data Access Complexity of Programs

    Full text link
    Technology trends will cause data movement to account for the majority of energy expenditure and execution time on emerging computers. Therefore, computational complexity will no longer be a sufficient metric for comparing algorithms, and a fundamental characterization of data access complexity will be increasingly important. The problem of developing lower bounds for data access complexity has been modeled using the formalism of Hong & Kung's red/blue pebble game for computational directed acyclic graphs (CDAGs). However, previously developed approaches to lower bounds analysis for the red/blue pebble game are very limited in effectiveness when applied to CDAGs of real programs, with computations comprised of multiple sub-computations with differing DAG structure. We address this problem by developing an approach for effectively composing lower bounds based on graph decomposition. We also develop a static analysis algorithm to derive the asymptotic data-access lower bounds of programs, as a function of the problem size and cache size

    Automatic Classification of Restricted Lattice Walks

    Get PDF
    We propose an experimental mathematics approach leading to the computer-driven discovery of various structural properties of general counting functions coming from enumeration of walks
    • …
    corecore