1,717 research outputs found

    Automatic Recognition, Segmentation, and Sex Assignment of Nocturnal Asthmatic Coughs and Cough Epochs in Smartphone Audio Recordings: Observational Field Study

    Get PDF
    Background: Asthma is one of the most prevalent chronic respiratory diseases. Despite increased investment in treatment, little progress has been made in the early recognition and treatment of asthma exacerbations over the last decade. Nocturnal cough monitoring may provide an opportunity to identify patients at risk for imminent exacerbations. Recently developed approaches enable smartphone-based cough monitoring. These approaches, however, have not undergone longitudinal overnight testing nor have they been specifically evaluated in the context of asthma. Also, the problem of distinguishing partner coughs from patient coughs when two or more people are sleeping in the same room using contact-free audio recordings remains unsolved. Objective: The objective of this study was to evaluate the automatic recognition and segmentation of nocturnal asthmatic coughs and cough epochs in smartphone-based audio recordings that were collected in the field. We also aimed to distinguish partner coughs from patient coughs in contact-free audio recordings by classifying coughs based on sex. Methods: We used a convolutional neural network model that we had developed in previous work for automated cough recognition. We further used techniques (such as ensemble learning, minibatch balancing, and thresholding) to address the imbalance in the data set. We evaluated the classifier in a classification task and a segmentation task. The cough-recognition classifier served as the basis for the cough-segmentation classifier from continuous audio recordings. We compared automated cough and cough-epoch counts to human-annotated cough and cough-epoch counts. We employed Gaussian mixture models to build a classifier for cough and cough-epoch signals based on sex. Results: We recorded audio data from 94 adults with asthma (overall: mean 43 years; SD 16 years; female: 54/94, 57%; male 40/94, 43%). Audio data were recorded by each participant in their everyday environment using a smartphone placed next to their bed; recordings were made over a period of 28 nights. Out of 704,697 sounds, we identified 30,304 sounds as coughs. A total of 26,166 coughs occurred without a 2-second pause between coughs, yielding 8238 cough epochs. The ensemble classifier performed well with a Matthews correlation coefficient of 92% in a pure classification task and achieved comparable cough counts to that of human annotators in the segmentation of coughing. The count difference between automated and human-annotated coughs was a mean –0.1 (95% CI –12.11, 11.91) coughs. The count difference between automated and human-annotated cough epochs was a mean 0.24 (95% CI –3.67, 4.15) cough epochs. The Gaussian mixture model cough epoch–based sex classification performed best yielding an accuracy of 83%. Conclusions: Our study showed longitudinal nocturnal cough and cough-epoch recognition from nightly recorded smartphone-based audio from adults with asthma. The model distinguishes partner cough from patient cough in contact-free recordings by identifying cough and cough-epoch signals that correspond to the sex of the patient. This research represents a step towards enabling passive and scalable cough monitoring for adults with asthma

    Automatic Cough Classification for Tuberculosis Screening in a Real-World Environment

    Full text link
    Objective: The automatic discrimination between the coughing sounds produced by patients with tuberculosis (TB) and those produced by patients with other lung ailments. Approach: We present experiments based on a dataset of 1358 forced cough recordings obtained in a developing-world clinic from 16 patients with confirmed active pulmonary TB and 35 patients suffering from respiratory conditions suggestive of TB but confirmed to be TB negative. Using nested cross-validation, we have trained and evaluated five machine learning classifiers: logistic regression (LR), support vector machines (SVM), k-nearest neighbour (KNN), multilayer perceptrons (MLP) and convolutional neural networks (CNN). Main Results: Although classification is possible in all cases, the best performance is achieved using LR. In combination with feature selection by sequential forward selection (SFS), our best LR system achieves an area under the ROC curve (AUC) of 0.94 using 23 features selected from a set of 78 high-resolution mel-frequency cepstral coefficients (MFCCs). This system achieves a sensitivity of 93\% at a specificity of 95\% and thus exceeds the 90\% sensitivity at 70\% specificity specification considered by the World Health Organisation (WHO) as a minimal requirement for a community-based TB triage test. Significance: The automatic classification of cough audio sounds, when applied to symptomatic patients requiring investigation for TB, can meet the WHO triage specifications for the identification of patients who should undergo expensive molecular downstream testing. This makes it a promising and viable means of low cost, easily deployable frontline screening for TB, which can benefit especially developing countries with a heavy TB burden.Comment: This paper has been accepted in Physiological Measurement (2021

    COVID-19 Cough Classification using Machine Learning and Global Smartphone Recordings

    Full text link
    We present a machine learning based COVID-19 cough classifier which can discriminate COVID-19 positive coughs from both COVID-19 negative and healthy coughs recorded on a smartphone. This type of screening is non-contact, easy to apply, and can reduce the workload in testing centres as well as limit transmission by recommending early self-isolation to those who have a cough suggestive of COVID-19. The datasets used in this study include subjects from all six continents and contain both forced and natural coughs, indicating that the approach is widely applicable. The publicly available Coswara dataset contains 92 COVID-19 positive and 1079 healthy subjects, while the second smaller dataset was collected mostly in South Africa and contains 18 COVID-19 positive and 26 COVID-19 negative subjects who have undergone a SARS-CoV laboratory test. Both datasets indicate that COVID-19 positive coughs are 15\%-20\% shorter than non-COVID coughs. Dataset skew was addressed by applying the synthetic minority oversampling technique (SMOTE). A leave-pp-out cross-validation scheme was used to train and evaluate seven machine learning classifiers: LR, KNN, SVM, MLP, CNN, LSTM and Resnet50. Our results show that although all classifiers were able to identify COVID-19 coughs, the best performance was exhibited by the Resnet50 classifier, which was best able to discriminate between the COVID-19 positive and the healthy coughs with an area under the ROC curve (AUC) of 0.98. An LSTM classifier was best able to discriminate between the COVID-19 positive and COVID-19 negative coughs, with an AUC of 0.94 after selecting the best 13 features from a sequential forward selection (SFS). Since this type of cough audio classification is cost-effective and easy to deploy, it is potentially a useful and viable means of non-contact COVID-19 screening.Comment: This paper has been accepted in "Computers in Medicine and Biology" and currently under productio

    Heart sounds:From animal to patient and Mhealth

    Get PDF

    Smartphone-Based pH Sensor for Home Monitoring of Pulmonary Exacerbations in Cystic Fibrosis.

    Get PDF
    Currently, Cystic Fibrosis (CF) patients lack the ability to track their lung health at home, relying instead on doctor checkups leading to delayed treatment and lung damage. By leveraging the ubiquity of the smartphone to lower costs and increase portability, a smartphone-based peripheral pH measurement device was designed to attach directly to the headphone port to harvest power and communicate with a smartphone application. This platform was tested using prepared pH buffers and sputum samples from CF patients. The system matches within ~0.03 pH of a benchtop pH meter while fully powering itself and communicating with a Samsung Galaxy S3 smartphone paired with either a glass or Iridium Oxide (IrOx) electrode. The IrOx electrodes were found to have 25% higher sensitivity than the glass probes at the expense of larger drift and matrix sensitivity that can be addressed with proper calibration. The smartphone-based platform has been demonstrated as a portable replacement for laboratory pH meters, and supports both highly robust glass probes and the sensitive and miniature IrOx electrodes with calibration. This tool can enable more frequent pH sputum tracking for CF patients to help detect the onset of pulmonary exacerbation to provide timely and appropriate treatment before serious damage occurs

    Towards using Cough for Respiratory Disease Diagnosis by leveraging Artificial Intelligence: A Survey

    Full text link
    Cough acoustics contain multitudes of vital information about pathomorphological alterations in the respiratory system. Reliable and accurate detection of cough events by investigating the underlying cough latent features and disease diagnosis can play an indispensable role in revitalizing the healthcare practices. The recent application of Artificial Intelligence (AI) and advances of ubiquitous computing for respiratory disease prediction has created an auspicious trend and myriad of future possibilities in the medical domain. In particular, there is an expeditiously emerging trend of Machine learning (ML) and Deep Learning (DL)-based diagnostic algorithms exploiting cough signatures. The enormous body of literature on cough-based AI algorithms demonstrate that these models can play a significant role for detecting the onset of a specific respiratory disease. However, it is pertinent to collect the information from all relevant studies in an exhaustive manner for the medical experts and AI scientists to analyze the decisive role of AI/ML. This survey offers a comprehensive overview of the cough data-driven ML/DL detection and preliminary diagnosis frameworks, along with a detailed list of significant features. We investigate the mechanism that causes cough and the latent cough features of the respiratory modalities. We also analyze the customized cough monitoring application, and their AI-powered recognition algorithms. Challenges and prospective future research directions to develop practical, robust, and ubiquitous solutions are also discussed in detail.Comment: 30 pages, 12 figures, 9 table

    Towards the Design of a Smartphone-Based Biofeedback Breathing Training: Indentifying Diaphragmatic Breathing Patterns From a Smartphones\u27 Microphone

    Get PDF
    Asthma, diabetes, hypertension, or major depression are non-communicable diseases (NCDs) and impose a major burden on global health. Stress is linked to both the causes and consequences of NCDs and it has been shown that biofeedback-based breathing trainings (BBTs) are effective in coping with stress. Here, diaphragmatic breathing, i.e. deep abdominal breathing, belongs to the most distinguished breathing techniques. However, high costs and low scalability of state-of-the-art BBTs that require expensive medical hardware and health professionals, represent a significant barrier for their widespread adoption. Health information technology has the potential to address this important practical problem. Particularly, it has been shown that a smartphone microphone has the ability to record audio signals from exhalation in a quality that can be compared to professional respiratory devices. As this finding is highly relevant for low-cost and scalable smartphone-based BBTs (SBBT) and – to the best of our knowledge - because it has not been investigated so far, we aim to design and evaluate the efficacy of such a SBBT. As a very first step, we apply design-science research and investigate in this research-in-progress the relationship of diaphragmatic breathing and its acoustic components by just using a smartphone’s microphone. For that purpose, we review related work and develop our hypotheses based on justificatory knowledge from physiology, physics and acoustics. We finally describe a laboratory study that is used to test our hypotheses. We conclude with a brief outlook on future work

    Analyzing Cough Sounds for the Evidence of Covid-19 using Deep Learning Models

    Get PDF
    Early detection of infectious disease is the must to prevent/avoid multiple infections, and Covid-19 is an example. When dealing with Covid-19 pandemic, Cough is still ubiquitously presented as one of the key symptoms in both severe and non-severe Covid-19 infections, even though symptoms appear differently in different sociodemographic categories. By realizing the importance of clinical studies, analyzing cough sounds using AI-driven tools could help add more values when it comes to decision-making. Moreover, for mass screening and to serve resource constrained regions, AI-driven tools are the must. In this thesis, Convolutional Neural Network (CNN) tailored deep learning models are studied to analyze cough sounds to detect the possible evidence of Covid-19. In addition to custom CNN, pre-trained deep learning models (e.g., Vgg-16, Resnet-50, MobileNetV1, and DenseNet121) are employed on a publicly available dataset. In our findings, custom CNN performed comparatively better than pre-trained deep learning models
    • …
    corecore