12,726 research outputs found

    Automatic ada code generation using a model-driven engineering approach

    Get PDF
    Currently, Model-Driven Engineering (MDE) is considered one of the most promising approaches for software development. In this paper, a simple but complete example based on state-machines will be used to demonstrate the benefits of this approach. After defining a modelling language (meta-model) for state-machines, a graphical tool will be presented which is aimed at easing the description and validation of state-machine models. These models will then be used as inputs for another tool which will automatically generate the corresponding Ada code, including a simulation program to test the correctness and performance of the implemented application.Proyecto MEDWSA (TIN2006-15175-C05-02)de CICYT y PMPDI-UPCT-2006 programa de la Universidad Politécnica de Cartagena

    Model-driven engineering approach to design and implementation of robot control system

    Full text link
    In this paper we apply a model-driven engineering approach to designing domain-specific solutions for robot control system development. We present a case study of the complete process, including identification of the domain meta-model, graphical notation definition and source code generation for subsumption architecture -- a well-known example of robot control architecture. Our goal is to show that both the definition of the robot-control architecture and its supporting tools fits well into the typical workflow of model-driven engineering development.Comment: Presented at DSLRob 2011 (arXiv:cs/1212.3308

    A Monitoring Language for Run Time and Post-Mortem Behavior Analysis and Visualization

    Get PDF
    UFO is a new implementation of FORMAN, a declarative monitoring language, in which rules are compiled into execution monitors that run on a virtual machine supported by the Alamo monitor architecture.Comment: In M. Ronsse, K. De Bosschere (eds), proceedings of the Fifth International Workshop on Automated Debugging (AADEBUG 2003), September 2003, Ghent. cs.SE/030902

    Model based code generation for distributed embedded systems

    Get PDF
    Embedded systems are becoming increasingly complex and more distributed. Cost and quality requirements necessitate reuse of the functional software components for multiple deployment architectures. An important step is the allocation of software components to hardware. During this process the differences between the hardware and application software architectures must be reconciled. In this paper we discuss an architecture driven approach involving model-based techniques to resolve these differences and integrate hardware and software components. The system architecture serves as the underpinning based on which distributed real-time components can be generated. Generation of various embedded system architectures using the same functional architecture is discussed. The approach leverages the following technologies – IME (Integrated Modeling Environment), the SAE AADL (Architecture Analysis and Design Language), and Ocarina. The approach is illustrated using the electronic throttle control system as a case study

    Formal modelling for Ada implementations: tasking Event-B

    No full text
    This paper describes a formal modelling approach, where Ada code is automatically generated from the modelling artefacts. We introduce an implementation-level specification, Tasking Event-B, which is an extension to Event-B. Event-B is a formal method, that can be used to model safety-, and business-critical systems. The work may be of interest to a section of the Ada community who are interested in applying formal modelling techniques in their development process, and automatically generating Ada code from the model. We describe a streamlined process, where the abstract modelling artefacts map easily to Ada language constructs. Initial modelling takes place at a high level of abstraction. We then use refinement, decomposition, and finally implementation-level annotations, to generate Ada code. We provide a brief introduction to Event-B, before illustrating the new approach using small examples taken from a larger case study

    On the engineering of crucial software

    Get PDF
    The various aspects of the conventional software development cycle are examined. This cycle was the basis of the augmented approach contained in the original grant proposal. This cycle was found inadequate for crucial software development, and the justification for this opinion is presented. Several possible enhancements to the conventional software cycle are discussed. Software fault tolerance, a possible enhancement of major importance, is discussed separately. Formal verification using mathematical proof is considered. Automatic programming is a radical alternative to the conventional cycle and is discussed. Recommendations for a comprehensive approach are presented, and various experiments which could be conducted in AIRLAB are described

    A Model-based transformation process to validate and implement high-integrity systems

    Get PDF
    Despite numerous advances, building High-Integrity Embedded systems remains a complex task. They come with strong requirements to ensure safety, schedulability or security properties; one needs to combine multiple analysis to validate each of them. Model-Based Engineering is an accepted solution to address such complexity: analytical models are derived from an abstraction of the system to be built. Yet, ensuring that all abstractions are semantically consistent, remains an issue, e.g. when performing model checking for assessing safety, and then for schedulability using timed automata, and then when generating code. Complexity stems from the high-level view of the model compared to the low-level mechanisms used. In this paper, we present our approach based on AADL and its behavioral annex to refine iteratively an architecture description. Both application and runtime components are transformed into basic AADL constructs which have a strict counterpart in classical programming languages or patterns for verification. We detail the benefits of this process to enhance analysis and code generation. This work has been integrated to the AADL-tool support OSATE2
    corecore