11,247 research outputs found

    Similarity measures for mid-surface quality evaluation

    Get PDF
    Mid-surface models are widely used in engineering analysis to simplify the analysis of thin-walled parts, but it can be difficult to ensure that the mid-surface model is representative of the solid part from which it was generated. This paper proposes two similarity measures that can be used to evaluate the quality of a mid-surface model by comparing it to a solid model of the same part. Two similarity measures are proposed; firstly a geometric similarity evaluation technique based on the Hausdorff distance and secondly a topological similarity evaluation method which uses geometry graph attributes as the basis for comparison. Both measures are able to provide local and global similarity evaluation for the models. The proposed methods have been implemented in a software demonstrator and tested on a selection of representative models. They have been found to be effective for identifying geometric and topological errors in mid-surface models and are applicable to a wide range of practical thin-walled designs

    Geometric and form feature recognition tools applied to a design for assembly methodology

    Get PDF
    The paper presents geometric tools for an automated Design for Assembly (DFA) assessment system. For each component in an assembly a two step features search is performed: firstly (using the minimal bounding box) mass, dimensions and symmetries are identified allowing the part to be classified, according to DFA convention, as either rotational or prismatic; secondly form features are extracted allowing an effective method of mechanised orientation to be determined. Together these algorithms support the fuzzy decision support system, of an assembly-orientated CAD system known as FuzzyDFA

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Robust Temporally Coherent Laplacian Protrusion Segmentation of 3D Articulated Bodies

    Get PDF
    In motion analysis and understanding it is important to be able to fit a suitable model or structure to the temporal series of observed data, in order to describe motion patterns in a compact way, and to discriminate between them. In an unsupervised context, i.e., no prior model of the moving object(s) is available, such a structure has to be learned from the data in a bottom-up fashion. In recent times, volumetric approaches in which the motion is captured from a number of cameras and a voxel-set representation of the body is built from the camera views, have gained ground due to attractive features such as inherent view-invariance and robustness to occlusions. Automatic, unsupervised segmentation of moving bodies along entire sequences, in a temporally-coherent and robust way, has the potential to provide a means of constructing a bottom-up model of the moving body, and track motion cues that may be later exploited for motion classification. Spectral methods such as locally linear embedding (LLE) can be useful in this context, as they preserve "protrusions", i.e., high-curvature regions of the 3D volume, of articulated shapes, while improving their separation in a lower dimensional space, making them in this way easier to cluster. In this paper we therefore propose a spectral approach to unsupervised and temporally-coherent body-protrusion segmentation along time sequences. Volumetric shapes are clustered in an embedding space, clusters are propagated in time to ensure coherence, and merged or split to accommodate changes in the body's topology. Experiments on both synthetic and real sequences of dense voxel-set data are shown. This supports the ability of the proposed method to cluster body-parts consistently over time in a totally unsupervised fashion, its robustness to sampling density and shape quality, and its potential for bottom-up model constructionComment: 31 pages, 26 figure

    Interactive semantic mapping: Experimental evaluation

    Get PDF
    Robots that are launched in the consumer market need to provide more effective human robot interaction, and, in particular, spoken language interfaces. However, in order to support the execution of high level commands as they are specified in natural language, a semantic map is required. Such a map is a representation that enables the robot to ground the commands into the actual places and objects located in the environment. In this paper, we present the experimental evaluation of a system specifically designed to build semantically rich maps, through the interaction with the user. The results of the experiments not only provide the basis for a discussion of the features of the proposed approach, but also highlight the manifold issues that arise in the evaluation of semantic mapping

    Ordered Statistics Vertex Extraction and Tracing Algorithm (OSVETA)

    Full text link
    We propose an algorithm for identifying vertices from three dimensional (3D) meshes that are most important for a geometric shape creation. Extracting such a set of vertices from a 3D mesh is important in applications such as digital watermarking, but also as a component of optimization and triangulation. In the first step, the Ordered Statistics Vertex Extraction and Tracing Algorithm (OSVETA) estimates precisely the local curvature, and most important topological features of mesh geometry. Using the vertex geometric importance ranking, the algorithm traces and extracts a vector of vertices, ordered by decreasing index of importance.Comment: Accepted for publishing and Copyright transfered to Advances in Electrical and Computer Engineering, November 23th 201
    corecore