123 research outputs found

    Trajectory planning based on adaptive model predictive control: Study of the performance of an autonomous vehicle in critical highway scenarios

    Get PDF
    Increasing automation in automotive industry is an important contribution to overcome many of the major societal challenges. However, testing and validating a highly autonomous vehicle is one of the biggest obstacles to the deployment of such vehicles, since they rely on data-driven and real-time sensors, actuators, complex algorithms, machine learning systems, and powerful processors to execute software, and they must be proven to be reliable and safe. For this reason, the verification, validation and testing (VVT) of autonomous vehicles is gaining interest and attention among the scientific community and there has been a number of significant efforts in this field. VVT helps developers and testers to determine any hidden faults, increasing systems confidence in safety, security, functional analysis, and in the ability to integrate autonomous prototypes into existing road networks. Other stakeholders like higher-management, public authorities and the public are also crucial to complete the VTT process. As autonomous vehicles require hundreds of millions of kilometers of testing driven on public roads before vehicle certification, simulations are playing a key role as they allow the simulation tools to virtually test millions of real-life scenarios, increasing safety and reducing costs, time and the need for physical road tests. In this study, a literature review is conducted to classify approaches for the VVT and an existing simulation tool is used to implement an autonomous driving system. The system will be characterized from the point of view of its performance in some critical highway scenarios.O aumento da automação na indústria automotiva é uma importante contribuição para superar muitos dos principais desafios da sociedade. No entanto, testar e validar um veículo altamente autónomo é um dos maiores obstáculos para a implantação de tais veículos, uma vez que eles contam com sensores, atuadores, algoritmos complexos, sistemas de aprendizagem de máquina e processadores potentes para executar softwares em tempo real, e devem ser comprovadamente confiáveis e seguros. Por esta razão, a verificação, validação e teste (VVT) de veículos autónomos está a ganhar interesse e atenção entre a comunidade científica e tem havido uma série de esforços significativos neste campo. A VVT ajuda os desenvolvedores e testadores a determinar quaisquer falhas ocultas, aumentando a confiança dos sistemas na segurança, proteção, análise funcional e na capacidade de integrar protótipos autónomos em redes rodoviárias existentes. Outras partes interessadas, como a alta administração, autoridades públicas e o público também são cruciais para concluir o processo de VTT. Como os veículos autónomos exigem centenas de milhões de quilómetros de testes conduzidos em vias públicas antes da certificação do veículo, as simulações estão a desempenhar cada vez mais um papel fundamental, pois permitem que as ferramentas de simulação testem virtualmente milhões de cenários da vida real, aumentando a segurança e reduzindo custos, tempo e necessidade de testes físicos em estrada. Neste estudo, é realizada uma revisão da literatura para classificar abordagens para a VVT e uma ferramenta de simulação existente é usada para implementar um sistema de direção autónoma. O sistema é caracterizado do ponto de vista do seu desempenho em alguns cenários críticos de autoestrad

    Driving in Dense Traffic with Model-Free Reinforcement Learning

    Full text link
    Traditional planning and control methods could fail to find a feasible trajectory for an autonomous vehicle to execute amongst dense traffic on roads. This is because the obstacle-free volume in spacetime is very small in these scenarios for the vehicle to drive through. However, that does not mean the task is infeasible since human drivers are known to be able to drive amongst dense traffic by leveraging the cooperativeness of other drivers to open a gap. The traditional methods fail to take into account the fact that the actions taken by an agent affect the behaviour of other vehicles on the road. In this work, we rely on the ability of deep reinforcement learning to implicitly model such interactions and learn a continuous control policy over the action space of an autonomous vehicle. The application we consider requires our agent to negotiate and open a gap in the road in order to successfully merge or change lanes. Our policy learns to repeatedly probe into the target road lane while trying to find a safe spot to move in to. We compare against two model-predictive control-based algorithms and show that our policy outperforms them in simulation.Comment: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2020. Updated Github repository link

    Holistic Vehicle Control Using Learning MPC

    Get PDF
    In recent years, learning MPC schemes have been introduced to address these challenges of traditional MPC. They typically leverage different machine learning techniques to learn the system dynamics directly from data, allowing it to handle model uncertainty more effectively. Besides, they can adapt to changes by continuously updating the learned model using real-time data, ensuring that the controller remains effective even as the system evolves. However, there are some challenges for the existing learning MPC techniques. Firstly, learning-based control approaches often lack interpretability. Understanding and interpreting the learned models and their learning and prediction processes are crucial for safety critical systems such as vehicle stability systems. Secondly, existing learning MPC techniques rely solely on learned models, which might result in poor performance or instability if the model encounters scenarios that differ significantly from the training data. Thirdly, existing learning MPC techniques typically require large amounts of high-quality data for training accurate models, which can be expensive or impractical in the vehicle stability control domain. To address these challenges, this thesis proposes a novel hybrid learning MPC approach for HVC. The main objective is to leverage the capabilities of machine learning algorithms to learn accurate and adaptive models of vehicle dynamics from data, enabling enhanced control strategies for improved stability and maneuverability. The hybrid learning MPC scheme maintains a traditional physics-based vehicle model and a data-based learning model. In the learned model, a variety of machine-learning techniques can be used to predict vehicle dynamics based on learning from collected vehicle data. The performance of the developed hybrid learning MPC controller using torque vectoring (TV) as the actuator is evaluated through the Matlab/Simulink and CarSim co-simulation with a high-fidelity Chevy Equinox vehicle model under a series of harsh maneuvers. Extensive real-world experiments using a Chevy Equinox electric testing vehicle are conducted. Both simulation results and experimental results show that the developed hybrid learning MPC approach consistently outperforms existing MPC methods with better yaw rate tracking performance and smaller vehicle sideslip under various driving conditions

    Exploring the challenges and opportunities of image processing and sensor fusion in autonomous vehicles: A comprehensive review

    Get PDF
    Autonomous vehicles are at the forefront of future transportation solutions, but their success hinges on reliable perception. This review paper surveys image processing and sensor fusion techniques vital for ensuring vehicle safety and efficiency. The paper focuses on object detection, recognition, tracking, and scene comprehension via computer vision and machine learning methodologies. In addition, the paper explores challenges within the field, such as robustness in adverse weather conditions, the demand for real-time processing, and the integration of complex sensor data. Furthermore, we examine localization techniques specific to autonomous vehicles. The results show that while substantial progress has been made in each subfield, there are persistent limitations. These include a shortage of comprehensive large-scale testing, the absence of diverse and robust datasets, and occasional inaccuracies in certain studies. These issues impede the seamless deployment of this technology in real-world scenarios. This comprehensive literature review contributes to a deeper understanding of the current state and future directions of image processing and sensor fusion in autonomous vehicles, aiding researchers and practitioners in advancing the development of reliable autonomous driving systems

    Approximate multi-agent planning in dynamic and uncertain environments

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, February 2012."December 2011." Cataloged from PDF version of thesis.Includes bibliographical references (p. 120-131).Teams of autonomous mobile robotic agents will play an important role in the future of robotics. Efficient coordination of these agents within large, cooperative teams is an important characteristic of any system utilizing multiple autonomous vehicles. Applications of such a cooperative technology stretch beyond multi-robot systems to include satellite formations, networked systems, traffic flow, and many others. The diversity of capabilities offered by a team, as opposed to an individual, has attracted the attention of both researchers and practitioners in part due to the associated challenges such as the combinatorial nature of joint action selection among interdependent agents. This thesis aims to address the issues of the issues of scalability and adaptability within teams of such inter-dependent agents while planning, coordinating, and learning in a decentralized environment. In doing so, the first focus is the integration of learning and adaptation algorithms into a multi-agent planning architecture to enable online adaptation of planner parameters. A second focus is the development of approximation algorithms to reduce the computational complexity of decentralized multi-agent planning methods. Such a reduction improves problem scalability and ultimately enables much larger robot teams. Finally, we are interested in implementing these algorithms in meaningful, real-world scenarios. As robots and unmanned systems continue to advance technologically, enabling a self-awareness as to their physical state of health will become critical. In this context, the architecture and algorithms developed in this thesis are implemented in both hardware and software flight experiments under a class of cooperative multi-agent systems we call persistent health management scenarios.by Joshua David Redding.Ph.D

    Deep Learning Based Malware Classification Using Deep Residual Network

    Get PDF
    The traditional malware detection approaches rely heavily on feature extraction procedure, in this paper we proposed a deep learning-based malware classification model by using a 18-layers deep residual network. Our model uses the raw bytecodes data of malware samples, converting the bytecodes to 3-channel RGB images and then applying the deep learning techniques to classify the malwares. Our experiment results show that the deep residual network model achieved an average accuracy of 86.54% by 5-fold cross validation. Comparing to the traditional methods for malware classification, our deep residual network model greatly simplify the malware detection and classification procedures, it achieved a very good classification accuracy as well. The dataset we used in this paper for training and testing is Malimg dataset, one of the biggest malware datasets released by vision research lab of UCSB

    Proceedings, MSVSCC 2019

    Get PDF
    Old Dominion University Department of Modeling, Simulation & Visualization Engineering (MSVE) and the Virginia Modeling, Analysis and Simulation Center (VMASC) held the 13th annual Modeling, Simulation & Visualization (MSV) Student Capstone Conference on April 18, 2019. The Conference featured student research and student projects that are central to MSV. Also participating in the conference were faculty members who volunteered their time to impart direct support to their students’ research, facilitated the various conference tracks, served as judges for each of the tracks, and provided overall assistance to the conference. Appreciating the purpose of the conference and working in a cohesive, collaborative effort, resulted in a successful symposium for everyone involved. These proceedings feature the works that were presented at the conference. Capstone Conference Chair: Dr. Yuzhong Shen Capstone Conference Student Chair: Daniel Pere

    Interpretable Machine Learning을 활용한 구간단속시스템 설치에 따른 인명피해사고 감소 효과 연구

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 건설환경공학부, 2020. 8. 김동규.In this study, a prediction model for casualty crash occurrence was developed considering whether to install SSES and the effect of SSES installation was quantified by dividing it into direct and indirect effects through the analysis of mediation effect. Also, it was recommended what needs to be considered in selecting the candidate sites for SSES installation. For this, crash prediction model was developed by using the machine learning for binary classification based on whether or not casualty crash occurred and the effects of SSES installation were analyzed based on crashes and speed-related variables. Especially, the IML methodology was applied that considered the predictive performance as well as the interpretability of the forecast results as important. When developing the IML which consisted of black-box and interpretable model, KNN, RF, and SVM were reviewed as black-box model, and DT and BLR were reviewed as interpretable model. In the model development, the hyper-parameters that could be set in each methodology were optimized through k-fold cross validation. The SVM with a polynomial kernel trick was selected as black-box model and the BLR was selected as interpretable model to predict the probability of casualty crash occurrence. For the developed IML model, the evaluation was conducted through comparison with the typical BLR from the perspective of the PDR framework. The evaluation confirmed that the results of the IML were more excellent than the typical BLR in terms of predictive accuracy, descriptive accuracy, and relevancy from a human in the loop. Using the result of IML's model development, the effect on SSES installation were quantified based on the probability equation of casualty crash occurrence. The equation is the logistic function that consists of SSES, SOR, SV, TVL, HVR, and CR. The result of analysis confirmed that the SSES installation reduced the probability of casualty crash occurrence by about 28%. In addition, the analysis of mediation effects on the variables affected by installing SSES was conducted to quantify the direct and indirect effects on the probability of reducing the casualty crashes caused by the SSES installation. The proportion of indirect effects through reducing the ratio of exceeding the speed limit (SOR) was about 30% and the proportion of indirect effects through reduction of speed variance (SV) was not statistically significant at the 95% confidence level. Finally, the probability equation of casualty crash occurrence developed in this study was applied to the sections of Yeongdong Expressway to compare the crash risk section with the actual crash data to examine the applicability of the development model. The analysis result verified that the equation was reasonable. Therefore, it may be considered to select dangerous sites based on casualty crash and speeding firstly, and then to install SSES at the section where traffic volume (TVL), heavy vehicle ratio (HVR), and curve ratio (CR) are higher than the other sections.본 연구에서는 구간단속시스템(Section Speed Enforcement System, SSES) 설치 효과를 정량화하기 위해 인명피해사고 예측모형을 개발하고, 매개효과 분석을 통해 SSES 설치에 대한 직접효과와 간접효과를 구분하여 정량화하였다. 또한, 개발한 예측모형에 대한 고속도로에서의 적용 가능성을 검토하고, SSES 설치 대상지 선정 시 고려해야할 사항을 제안하였다. 모형 개발에는 인명피해사고 발생 여부를 종속변수로 하는 이진분류형 기계학습을 활용하였으며, 기계학습 중에서는 모형의 예측 성능과 더불어 예측 결과에 대한 해석력을 중요하게 고려하는 인터프리터블 머신 러닝(Interpretable Machine Learning, IML) 방법론을 적용하였다. IML은 블랙박스 모델과 인터프리터블 모델로 구성되며, 본 연구에서는 블랙박스 모델로 KNN, RF 및 SVM을, 인터프리터블 모델로 DT와 BLR을 검토하였다. 모형 개발 시에는 각 기법에서 튜닝이 가능한 하이퍼 파라미터에 대하여 교차검증 과정을 거쳐 최적화하였다. 블랙박스 모델은 폴리노미얼 커널 트릭을 활용한 SVM을, 인터프리터블 모델은 BLR을 적용하여 인명피해사고 발생 확률을 예측하는 모형을 개발하였다. 개발된 IML 모델에 대해서는 PDR(Predictive accuracy, Descriptive accuracy and Relevancy) 프레임워크 관점에서 (typical) BLR 모델과 비교 평가를 진행하였다. 평가 결과 예측 정확도, 해석 정확도 및 인간의 이해관점에서의 적합성 등에서 모두 IML 모델이 우수함을 확인하였다. 또한, 본 연구에서 개발된 IML 모델 기반의 인명피해사고 발생 확률식은 SSES, SOR, SV, TVL, HVR 및 CR의 독립변수로 구성되었으며, 이 확률식을 기반으로 SSES 설치에 대한 효과를 정량화하였다. 정량화 분석 결과, SSES 설치로 인해 약 28% 정도의 인명피해사고 발생 확률이 감소함을 확인할 수 있었다. 또한, 모형 개발에 활용된 변수 중 SSES 설치로 인해 영향을 받는 변수들(SOR 및 SV)에 대한 매개효과 분석을 통해 SSES 설치로 인한 인명피해사고 감소 확률을 직접효과와 간접효과를 구분하여 제시하였다. 분석 결과, SSES와 제한속도 초과비율(SOR)의 관계에서 있어서는 약 30%가 간접효과이고, SSES와 속도분산(SV)의 관계에 있어서는 매개효과가 통계적으로 유의하지 않음을 확인할 수 있었다. 마지막으로 영동고속도로를 대상으로 인명피해사고 발생 확률식 기반의 예측 위험구간과 실제 인명사고 다발 구간에 대한 비교 분석을 통해 연구 결과의 활용 가능성을 확인하였다. 또한, SSES 설치 대상지 선정 시에는 사고 및 속도 분석을 통한 위험구간을 선별한 후 교통량(TVL)이 많은 곳, 통과차량 중 중차량 비율(HVR)이 높은 곳 및 구간 내 곡선비율(CR)이 높은 곳을 우선적으로 검토하는 것을 제안하였다.1. Introduction 1 1.1. Background of research 1 1.2. Objective of research 4 1.3. Research Flow 6 2. Literature Review 11 2.1. Research related to SSES 11 2.1.1. Effectiveness of SSES 11 2.1.2. Installation criteria of SSES 15 2.2. Machine learning about transportation 17 2.2.1. Machine learning algorithm 17 2.2.2. Machine learning algorithm about transportation 19 2.3. Crash prediction model 23 2.3.1. Frequency of crashes 23 2.3.2. Severity of crash 26 2.4. Interpretable Machine Learning (IML) 31 2.4.1. Introduction 31 2.4.2. Application of IML 33 3. Model Specification 37 3.1. Analysis of SSES effectiveness 37 3.1.1. Crashes analysis 37 3.1.2. Speed analysis 39 3.2. Data collection & pre-analysis 40 3.2.1. Data collection 40 3.2.2. Basic statistics of variables 42 3.3. Response variable selection 50 3.4. Model selection 52 3.4.1. Binary classification 52 3.4.2. Accuracy vs. Interpretability 53 3.4.3. Overview of IML 54 3.4.4. Process of model specification 57 4. Model development 59 4.1. Black-box and interpretable model 59 4.1.1. Consists of IML 59 4.1.2. Black-box model 60 4.1.3. Interpretable model 68 4.2. Model development 72 4.2.1. Procedure 72 4.2.2. Measures of effectiveness 74 4.2.3. K-fold cross validation 76 4.3. Result of model development 78 4.3.1. Result of black-box model 78 4.3.2. Result of interpretable model 85 5. Evaluation & Application 91 5.1. Evaluation 91 5.1.1. The PDR framework for IML 91 5.1.2. Predictive accuracy 93 5.1.3. Descriptive accuracy 94 5.1.4. Relevancy 99 5.2. Impact of Casualty Crash Reduction 102 5.2.1. Quantification of the effectiveness 102 5.2.2. Mediation effect analysis 106 5.3. Application for the Korean expressway 118 6. Conclusion 121 6.1. Summary and Findings 121 6.2. Further Research 125Docto
    corecore