1,289 research outputs found

    Topological model for machining of parts with complex shapes

    Get PDF
    Complex shapes are widely used to design products in several industries such as aeronautics, automotive and domestic appliances. Several variations of their curvatures and orientations generate difficulties during their manufacturing or the machining of dies used in moulding, injection and forging. Analysis of several parts highlights two levels of difficulties between three types of shapes: prismatic parts with simple geometrical shapes, aeronautic structure parts composed of several shallow pockets and forging dies composed of several deep cavities which often contain protrusions. This paper mainly concerns High Speed Machining (HSM) of these dies which represent the highest complexity level because of the shapes' geometry and their topology. Five axes HSM is generally required for such complex shaped parts but 3 axes machining can be sufficient for dies. Evolutions in HSM CAM software and machine tools lead to an important increase in time for machining preparation. Analysis stages of the CAD model particularly induce this time increase which is required for a wise choice of cutting tools and machining strategies. Assistance modules for prismatic parts machining features identification in CAD models are widely implemented in CAM software. In spite of the last CAM evolutions, these kinds of CAM modules are undeveloped for aeronautical structure parts and forging dies. Development of new CAM modules for the extraction of relevant machining areas as well as the definition of the topological relations between these areas must make it possible for the machining assistant to reduce the machining preparation time. In this paper, a model developed for the description of complex shape parts topology is presented. It is based on machining areas extracted for the construction of geometrical features starting from CAD models of the parts. As topology is described in order to assist machining assistant during machining process generation, the difficulties associated with tasks he carried out are analyzed at first. The topological model presented after is based on the basic geometrical features extracted. Topological relations which represent the framework of the model are defined between the basic geometrical features which are gathered afterwards in macro-features. Approach used for the identification of these macro-features is also presented in this paper. Detailed application on the construction of the topological model of forging dies is presented in the last part of the paper

    Computer aided process planning for multi-axis CNC machining using feature free polygonal CAD models

    Get PDF
    This dissertation provides new methods for the general area of Computer Aided Process Planning, often referred to as CAPP. It specifically focuses on 3 challenging problems in the area of multi-axis CNC machining process using feature free polygonal CAD models. The first research problem involves a new method for the rapid machining of Multi-Surface Parts. These types of parts typically have different requirements for each surface, for example, surface finish, accuracy, or functionality. The CAPP algorithms developed for this problem ensure the complete rapid machining of multi surface parts by providing better setup orientations to machine each surface. The second research problem is related to a new method for discrete multi-axis CNC machining of part models using feature free polygonal CAD models. This problem specifically considers a generic 3-axis CNC machining process for which CAPP algorithms are developed. These algorithms allow the rapid machining of a wide variety of parts with higher geometric accuracy by enabling access to visible surfaces through the choice of appropriate machine tool configurations (i.e. number of axes). The third research problem addresses challenges with geometric singularities that can occur when 2D slice models are used in process planning. The conversion from CAD to slice model results in the loss of model surface information, the consequence of which could be suboptimal or incorrect process planning. The algorithms developed here facilitate transfer of complete surface geometry information from CAD to slice models. The work of this dissertation will aid in developing the next generation of CAPP tools and result in lower cost and more accurately machined components

    Multi-objective Tool Sequence Optimization in 2.5D Pocket CNC Milling for Minimizing Energy Consumption and Machining Cost

    Get PDF
    Tool sequence selection is an important task for 2.5D pocket milling and has a significant influence on both the energy consumption and machining cost of the final product. In this paper, the influence of tool sequence on energy consumption is firstly analyzed. Then a multi-objective tool sequence optimization model is proposed with the objective of minimizing energy consumption and machining cost and solved by the graph algorithm. Finally, a case study is carried out to validate the proposed model and search for the trade-off solutions between energy consumption and machining cost

    Feature-based process planning for CNC machining

    Get PDF
    Journal ArticleToday CNC machining is used successfully to provide program-driven medium lot size manufacturing. The range of applicability of CNC machining should be greater: For small lot sizes such as prototyping or custom products, these machines should provide quick turnaround and flexible production scheduling. To set up for larger lot size production, the CNC machines can be used to construct small lots of production tooling, such as jigs, fixtures, molds and dies

    Development of a manufacturing feature-based design system

    Get PDF
    Traditional CAD systems are based on the serial approach of the product development cycle: the design process is not integrated with other activities and thus it can not provide information for subsequent phases of product development. In order to eliminate this problem, many modern CAD systems allow the composition of designs from building blocks of higher level of abstraction called features. Although features used in current systems tend to be named after manufacturing processes, they do not, in reality, provide valuable manufacturing data. Apart from the obvious disadvantage that process engineers need to re-evaluate the design and capture the intent of the designer, this approach also prohibits early detection of possible manufacturing problems. This research attempts to bring the design and manufacturing phases together by implementing manufacturing features. A design is composed entirely in a bottom-up manner using manufacturable entities in the same way as they would be produced during the manufacturing phase. Each feature consists of parameterised geometry, manufacturing information (including machine tool, cutting tools, cutting conditions, fixtures, and relative cost information), design limitations, functionality rules, and design-for-manufacture rules. The designer selects features from a hierarchical feature library. Upon insertion of a feature, the system ensures that no functionality or manufacturing rules are violated. If a feature is modified, the system validates the feature by making sure that it remains consistent with its original functionality and design-for-manufacture rules are re-applied. The system also allows analysis of designs, from a manufacturing point of view, that were not composed using features. In order to reduce the complexity of the system, design functionality and design-for manufacture rules are organised into a hierarchical system and are pointed to the appropriate entries of the feature hierarchy. The system makes it possible to avoid costly designs by eliminating possible manufacturing problems early in the product development cycle. It also makes computer-aided process planning feasible. The system is developed as an extension of a commercially available CAD/CAM system (Pro/Engineer), and at its current stage only deals with machining features. However, using the same principles, it can be expanded to cover other kinds of manufacturing processes

    Fixture planning in a feature based environment

    Get PDF

    From computer-aided to intelligent machining: Recent advances in computer numerical control machining research

    Get PDF
    The aim of this paper is to provide an introduction and overview of recent advances in the key technologies and the supporting computerized systems, and to indicate the trend of research and development in the area of computational numerical control machining. Three main themes of recent research in CNC machining are simulation, optimization and automation, which form the key aspects of intelligent manufacturing in the digital and knowledge based manufacturing era. As the information and knowledge carrier, feature is the efficacious way to achieve intelligent manufacturing. From the regular shaped feature to freeform surface feature, the feature technology has been used in manufacturing of complex parts, such as aircraft structural parts. The authors’ latest research in intelligent machining is presented through a new concept of multi-perspective dynamic feature (MpDF), for future discussion and communication with readers of this special issue. The MpDF concept has been implemented and tested in real examples from the aerospace industry, and has the potential to make promising impact on the future research in the new paradigm of intelligent machining. The authors of this paper are the guest editors of this special issue on computational numerical control machining. The guest editors have extensive and complementary experiences in both academia and industry, gained in China, USA and UK

    Manufacturability analysis for non-feature-based objects

    Get PDF
    This dissertation presents a general methodology for evaluating key manufacturability indicators using an approach that does not require feature recognition, or feature-based design input. The contributions involve methods for computing three manufacturability indicators that can be applied in a hierarchical manner. The analysis begins with the computation of visibility, which determines the potential manufacturability of a part using material removal processes such as CNC machining. This manufacturability indicator is purely based on accessibility, without considering the actual machine setup and tooling. Then, the analysis becomes more specific by analyzing the complexity in setup planning for the part; i.e. how the part geometry can be oriented to a cutting tool in an accessible manner. This indicator establishes if the part geometry is accessible about an axis of rotation, namely, whether it can be manufactured on a 4th-axis indexed machining system. The third indicator is geometric machinability, which is computed for each machining operation to indicate the actual manufacturability when employing a cutting tool with specific shape and size. The three manufacturability indicators presented in this dissertation are usable as steps in a process; however they can be executed alone or hierarchically in order to render manufacturability information. At the end of this dissertation, a Multi-Layered Visibility Map is proposed, which would serve as a re-design mechanism that can guide a part design toward increased manufacturability

    Design for manufacture using machining features on CNC machining centers

    Get PDF
    Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM) systems have become more and more needed and useful in the machining processes environment. In order to achieve competitive advantage, companies adopted new manufacturing methods. As a consequence, and in machining processes context, the interaction of CAD and CAM has growth over the years in order to increase the production efficiency, as well as to reduce costs and time. The development of this work started with an extensive literature review. In that review, the author found that only a few articles approached the interaction or integration of CAD and CAM systems. Moreover, the authors that studied this interaction focused on systems for turning parts. Thus, there is a gap in the literature related to the integration and automation of these systems when applied to milling parts. Therefore, the purpose of this dissertation is to enable the interaction of these systems in order to provide a completely automated process since the design stage until the machining stage. Finally, the process’ implementation showed that the developed algorithm was able to satisfy the initial requirements of this work, i.e., when given a set of initial parameters, the program drew the required geometry, and then generated the required G-code, such that this code can be sent to the CAM software to machine the workpiece, thereby obtaining the final product.Os sistemas Computer-Aided Design (CAD) and Computer-Aided Manufacturing(CAM) estão, cada vez mais, a ser mais necessários e úteis no contexto da maquinagem. De modo a conseguir vantagem competitiva, as empresas têm adotado novos métodos de produção. Consequentemente, no contexto da indústria da maquinagem, a interação entre CAD e CAM tem crescido nos últimos anos, de modo a permitir uma maior eficácia na produção, assim como também redução de tempo e custo. O desenvolvimento deste trabalho começou com uma extensa revisão da literatura. Nesta revisão, o autor apercebeu-se que apenas alguns artigos se debruçaram sobre a interação ou integração dos sistemas CAD e CAM. Para além disso, os autores desses artigos focaram-se em sistemas para torneamento. Assim, constata-se que existe um espaço livre na literatura no que diz respeito à integração destes sistemas quando aplicados à fresagem. Por isso, o objetivo desta dissertação é permitir a interação dos dois sistemas referidos, de forma a promover um processo completamente automático desde o design até à maquinagem. Por fim, a implementação do processo mostrou que o algoritmo desenvolvido alcançou os objetivos iniciais do trabalho, ou seja, baseando-se apenas nos parâmetros fornecidos, o programa desenhou as geometrias necessárias, sendo depois capaz de gerar o código G respetivo, para que este possa ser transferido para o centro de maquinagem, de modo a que o material possa ser maquinado, dando origem ao produto final
    corecore