1,354 research outputs found

    Advances in automated tongue diagnosis techniques

    Get PDF
    This paper reviews the recent advances in a significant constituent of traditional oriental medicinal technology, called tongue diagnosis. Tongue diagnosis can be an effective, noninvasive method to perform an auxiliary diagnosis any time anywhere, which can support the global need in the primary healthcare system. This work explores the literature to evaluate the works done on the various aspects of computerized tongue diagnosis, namely preprocessing, tongue detection, segmentation, feature extraction, tongue analysis, especially in traditional Chinese medicine (TCM). In spite of huge volume of work done on automatic tongue diagnosis (ATD), there is a lack of adequate survey, especially to combine it with the current diagnosis trends. This paper studies the merits, capabilities, and associated research gaps in current works on ATD systems. After exploring the algorithms used in tongue diagnosis, the current trend and global requirements in health domain motivates us to propose a conceptual framework for the automated tongue diagnostic system on mobile enabled platform. This framework will be able to connect tongue diagnosis with the future point-of-care health system

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    Sensors as green tools in analytical chemistry

    Get PDF
    Altres ajuts: Acord transformatiu CRUE-CSICThis article comments on green aspects of (bio)chemical sensors for qualitative and quantitative analysis applications. First, the aspects that connect chemical sensors and biosensors with the main trends of green analytical chemistry are discussed. To continue, a set of paradigmatic examples of sustainable assays pertaining to the (bio)sensing field have been selected and explored in some of their variants. These are the use of a smartphone camera together with a microfluidic paper platform to perform colorimetric or fluorometric assays, the use of the portable glucose meter as transducer for a variety of (bio)assays different of glucose, or the coupling of sensor arrays with advanced chemometric processing for smart sensing (electronic noses and electronic tongues)

    Odontology & artificial intelligence

    Get PDF
    Neste trabalho avaliam-se os três fatores que fizeram da inteligência artificial uma tecnologia essencial hoje em dia, nomeadamente para a odontologia: o desempenho do computador, Big Data e avanços algorítmicos. Esta revisão da literatura avaliou todos os artigos publicados na PubMed até Abril de 2019 sobre inteligência artificial e odontologia. Ajudado com inteligência artificial, este artigo analisou 1511 artigos. Uma árvore de decisão (If/Then) foi executada para selecionar os artigos mais relevantes (217), e um algoritmo de cluster k-means para resumir e identificar oportunidades de inovação. O autor discute os artigos mais interessantes revistos e compara o que foi feito em inovação durante o International Dentistry Show, 2019 em Colónia. Concluiu, assim, de forma crítica que há uma lacuna entre tecnologia e aplicação clínica desta, sendo que a inteligência artificial fornecida pela indústria de hoje pode ser considerada um atraso para o clínico de amanhã, indicando-se um possível rumo para a aplicação clínica da inteligência artificial.There are three factors that have made artificial intelligence (AI) an essential technology today: the computer performance, Big Data and algorithmic advances. This study reviews the literature on AI and Odontology based on articles retrieved from PubMed. With the help of AI, this article analyses a large number of articles (a total of 1511). A decision tree (If/Then) was run to select the 217 most relevant articles-. Ak-means cluster algorithm was then used to summarize and identify innovation opportunities. The author discusses the most interesting articles on AI research and compares them to the innovation presented during the International Dentistry Show 2019 in Cologne. Three technologies available now are evaluated and three suggested options are been developed. The author concludes that AI provided by the industry today is a hold-up for the praticioner of tomorrow. The author gives his opinion on how to use AI for the profit of patients

    Mobile Health (mHealth) and Advances in Noninvasive Diagnosis of Anemia: An Overview

    Get PDF
    Anemia is a public health problem that can have different causes, such as iron deficiency, vitamin deficiency, inflammation, hemolytic anemias, and anemias associated with bone marrow disease. Anemia shows a decrease in the concentration of hemoglobin, a pigmented molecule in the erythrocytes. The objectives of this review were to highlight the impact of nutritional factors on morbidity and mortality caused by anemia and to present different non-invasive approaches that use a smartphone to analyze hemoglobin levels to detect anemia. According to the records of the Brazilian Unified Health System (SUS, in the Portuguese acronym), ∼ 440,000 people checked in hospitals due to anemia between January 2015 and April 2020, with 215,000 deaths. The government spent ∼ 294 million Brazilian Reais (more than 50 million US dollars) on anemia hospitalization cases during this period. There is a worldwide search to provide noninvasive diagnostics and mobile health (mHealth) tools to help diagnosing anemia. The smartphone appears to be a viable device to detect anemia by a camera with colorimetric analysis of images providing a quantitative, instantaneous, and noninvasive result. These images can be obtained as a photograph or extracted from video frames. The review presents three different methods of detecting anemia using a smartphone: i) photoplethysmograph from video obtained from the tip of the index finger, ii) photo of the palpebral conjunctiva, and iii) fingernail photo app. Therefore, it seems urgent that these approaches may be applied in routine clinical diagnosis to allow remote, needy, low-tech locations to have access to anemia screening

    Deep Machine Learning for Oral Cancer : From Precise Diagnosis to Precision Medicine

    Get PDF
    Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers worldwide and its incidence is on the rise in many populations. The high incidence rate, late diagnosis, and improper treatment planning still form a significant concern. Diagnosis at an early-stage is important for better prognosis, treatment, and survival. Despite the recent improvement in the understanding of the molecular mechanisms, late diagnosis and approach toward precision medicine for OSCC patients remain a challenge. To enhance precision medicine, deep machine learning technique has been touted to enhance early detection, and consequently to reduce cancer-specific mortality and morbidity. This technique has been reported to have made a significant progress in data extraction and analysis of vital information in medical imaging in recent years. Therefore, it has the potential to assist in the early-stage detection of oral squamous cell carcinoma. Furthermore, automated image analysis can assist pathologists and clinicians to make an informed decision regarding cancer patients. This article discusses the technical knowledge and algorithms of deep learning for OSCC. It examines the application of deep learning technology in cancer detection, image classification, segmentation and synthesis, and treatment planning. Finally, we discuss how this technique can assist in precision medicine and the future perspective of deep learning technology in oral squamous cell carcinoma.© 2022 Alabi, Almangush, Elmusrati and Mäkitie. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore