17,312 research outputs found

    Robust Computer Algebra, Theorem Proving, and Oracle AI

    Get PDF
    In the context of superintelligent AI systems, the term "oracle" has two meanings. One refers to modular systems queried for domain-specific tasks. Another usage, referring to a class of systems which may be useful for addressing the value alignment and AI control problems, is a superintelligent AI system that only answers questions. The aim of this manuscript is to survey contemporary research problems related to oracles which align with long-term research goals of AI safety. We examine existing question answering systems and argue that their high degree of architectural heterogeneity makes them poor candidates for rigorous analysis as oracles. On the other hand, we identify computer algebra systems (CASs) as being primitive examples of domain-specific oracles for mathematics and argue that efforts to integrate computer algebra systems with theorem provers, systems which have largely been developed independent of one another, provide a concrete set of problems related to the notion of provable safety that has emerged in the AI safety community. We review approaches to interfacing CASs with theorem provers, describe well-defined architectural deficiencies that have been identified with CASs, and suggest possible lines of research and practical software projects for scientists interested in AI safety.Comment: 15 pages, 3 figure

    Towards the Formal Reliability Analysis of Oil and Gas Pipelines

    Get PDF
    It is customary to assess the reliability of underground oil and gas pipelines in the presence of excessive loading and corrosion effects to ensure a leak-free transport of hazardous materials. The main idea behind this reliability analysis is to model the given pipeline system as a Reliability Block Diagram (RBD) of segments such that the reliability of an individual pipeline segment can be represented by a random variable. Traditionally, computer simulation is used to perform this reliability analysis but it provides approximate results and requires an enormous amount of CPU time for attaining reasonable estimates. Due to its approximate nature, simulation is not very suitable for analyzing safety-critical systems like oil and gas pipelines, where even minor analysis flaws may result in catastrophic consequences. As an accurate alternative, we propose to use a higher-order-logic theorem prover (HOL) for the reliability analysis of pipelines. As a first step towards this idea, this paper provides a higher-order-logic formalization of reliability and the series RBD using the HOL theorem prover. For illustration, we present the formal analysis of a simple pipeline that can be modeled as a series RBD of segments with exponentially distributed failure times.Comment: 15 page

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Variations on a Theme: A Bibliography on Approaches to Theorem Proving Inspired From Satchmo

    Get PDF
    This articles is a structured bibliography on theorem provers, approaches to theorem proving, and theorem proving applications inspired from Satchmo, the model generation theorem prover developed in the mid 80es of the 20th century at ECRC, the European Computer- Industry Research Centre. Note that the bibliography given in this article is not exhaustive

    Formal representation and proof for cooperative games

    Get PDF
    In this contribution we present some work we have been doing in representing and proving theorems from the area of economics, and mainly we present work we will do in a project in which we will apply mechanised theorem proving tools to a class of economic problems for which very few general tools currently exist. For mechanised theorem proving, the research introduces the field to a new application domain with a large user base; more specifically, the researchers are collaborating with developers working on state-of-the-art theorem provers. For economics, the research will provide tools for handling a hard class of problems; more generally, as the first application of mechanised theorem proving to centrally involve economic theorists, it aims to properly introduce mechanised theorem proving techniques to the discipline.\u

    Proving soundness of combinatorial Vickrey auctions and generating verified executable code

    Full text link
    Using mechanised reasoning we prove that combinatorial Vickrey auctions are soundly specified in that they associate a unique outcome (allocation and transfers) to any valid input (bids). Having done so, we auto-generate verified executable code from the formally defined auction. This removes a source of error in implementing the auction design. We intend to use formal methods to verify new auction designs. Here, our contribution is to introduce and demonstrate the use of formal methods for auction verification in the familiar setting of a well-known auction

    Edit and verify

    Full text link
    Automated theorem provers are used in extended static checking, where they are the performance bottleneck. Extended static checkers are run typically after incremental changes to the code. We propose to exploit this usage pattern to improve performance. We present two approaches of how to do so and a full solution

    Mining State-Based Models from Proof Corpora

    Full text link
    Interactive theorem provers have been used extensively to reason about various software/hardware systems and mathematical theorems. The key challenge when using an interactive prover is finding a suitable sequence of proof steps that will lead to a successful proof requires a significant amount of human intervention. This paper presents an automated technique that takes as input examples of successful proofs and infers an Extended Finite State Machine as output. This can in turn be used to generate proofs of new conjectures. Our preliminary experiments show that the inferred models are generally accurate (contain few false-positive sequences) and that representing existing proofs in such a way can be very useful when guiding new ones.Comment: To Appear at Conferences on Intelligent Computer Mathematics 201
    • …
    corecore