112 research outputs found

    Finalised dependability framework and evaluation results

    Get PDF
    The ambitious aim of CONNECT is to achieve universal interoperability between heterogeneous Networked Systems by means of on-the-fly synthesis of the CONNECTors through which they communicate. The goal of WP5 within CONNECT is to ensure that the non-functional properties required at each side of the connection going to be established are fulfilled, including dependability, performance, security and trust, or, in one overarching term, CONNECTability. To model such properties, we have introduced the CPMM meta-model which establishes the relevant concepts and their relations, and also includes a Complex Event language to express the behaviour associated with the specified properties. Along the four years of project duration, we have developed approaches for assuring CONNECTability both at synthesis time and at run-time. Within CONNECT architecture, these approaches are supported via the following enablers: the Dependability and Performance analysis Enabler, which is implemented in a modular architecture supporting stochastic verification and state-based analysis. Dependability and performance analysis also relies on approaches for incremental verification to adjust CONNECTor parameters at run-time; the Security Enabler, which implements a Security-by-Contract-with-Trust framework to guarantee the expected security policies and enforce them accordingly to the level of trust; the Trust Manager that implements a model-based approach to mediate between different trust models and ensure interoperable trust management. The enablers have been integrated within the CONNECT architecture, and in particular can interact with the CONNECT event-based monitoring enabler (GLIMPSE Enabler released within WP4) for run-time analysis and verification. To support a Model-driven approach in the interaction with the monitor, we have developed a CPMM editor and a translator from CPMM to the GLIMPSE native language (Drools). In this document that is the final deliverable from WP5 we first present the latest advances in the fourth year concerning CPMM, Dependability&Performance Analysis, Incremental Verification and Security. Then, we make an overall summary of main achievements for the whole project lifecycle. In appendix we also include some relevant articles specifically focussing on CONNECTability that have been prepared in the last period

    On cost-effective reuse of components in the design of complex reconfigurable systems

    Get PDF
    Design strategies that benefit from the reuse of system components can reduce costs while maintaining or increasing dependability—we use the term dependability to tie together reliability and availability. D3H2 (aDaptive Dependable Design for systems with Homogeneous and Heterogeneous redundancies) is a methodology that supports the design of complex systems with a focus on reconfiguration and component reuse. D3H2 systematizes the identification of heterogeneous redundancies and optimizes the design of fault detection and reconfiguration mechanisms, by enabling the analysis of design alternatives with respect to dependability and cost. In this paper, we extend D3H2 for application to repairable systems. The method is extended with analysis capabilities allowing dependability assessment of complex reconfigurable systems. Analysed scenarios include time-dependencies between failure events and the corresponding reconfiguration actions. We demonstrate how D3H2 can support decisions about fault detection and reconfiguration that seek to improve dependability while reducing costs via application to a realistic railway case study

    Project Final Report Use and Dissemination of Foreground

    Get PDF
    This document is the final report on use and dissemination of foreground, part of the CONNECT final report. The document provides the lists of: publications, dissemination activities, and exploitable foregroun

    Dynamic Connector Synthesis: Principles, Methods, Tools and Assessment

    Get PDF
    CONNECT adopts a revolutionary approach to the seamless networking of digital systems, that is, onthe- fly synthesis of the connectors via which networked systems communicate. Within CONNECT, the role of the WP3 work package is to devise automated and efficient approaches to the synthesis of such emergent connectors, provided the behavioral specification of the components to be connected. Thanks to WP3 scientific and technology development, emergent connectors can be synthesized on the fly as networked systems get discovered, implementing the necessary mediation between networked systems' protocols, from application down to middleware layers. This document being the final report about WP3 achievements, it outlines both: (i) specific contributions over the reporting period, and (ii) overall contributions in the area of automated, on-the-fly protocol mediation, from theory to supporting tool

    Run Time Models in Adaptive Service Infrastructure

    Full text link
    Software in the near ubiquitous future will need to cope with vari- ability, as software systems get deployed on an increasingly large diversity of computing platforms and operates in different execution environments. Heterogeneity of the underlying communication and computing infrastruc- ture, mobility inducing changes to the execution environments and therefore changes to the availability of resources and continuously evolving requirements require software systems to be adaptable according to the context changes. Software systems should also be reliable and meet the user's requirements and needs. Moreover, due to its pervasiveness, software systems must be de- pendable. Supporting the validation of these self-adaptive systems to ensure dependability requires a complete rethinking of the software life cycle. The traditional division among static analysis and dynamic analysis is blurred by the need to validate dynamic systems adaptation. Models play a key role in the validation of dependable systems, dynamic adaptation calls for the use of such models at run time. In this paper we describe the approach we have un- dertaken in recent projects to address the challenge of assessing dependability for adaptive software systems

    NEGOSEIO: framework for the sustainability of model-oriented enterprise interoperability

    Get PDF
    Dissertation to obtain the degree of Doctor of Philosophy in Electrical and Computer Engineering(Industrial Information Systems)This dissertation tackles the problematic of Enterprise Interoperability in the current globally connected world. The evolution of the Information and Communication Technologies has endorsed the establishment of fast, secure and robust data exchanges, promoting the development of networked solutions. This allowed the specialisation of enterprises (particularly SMEs) and favoured the development of complex and heterogeneous provider systems. Enterprises are abandoning their self-centrism and working together on the development of more complete solutions. Entire business solutions are built integrating several enterprises (e.g., in supply chains, enterprise nesting) towards a common objective. Additionally, technologies, platforms, trends, standards and regulations keep evolving and demanding enterprises compliance. This evolution needs to be continuous, and is naturally followed by a constant update of each networked enterprise’s interfaces, assets, methods and processes. This unstable environment of perpetual change is causing major concerns in both SMEs and customers as the current interoperability grounds are frail, easily leading to periods of downtime, where business is not possible. The pressure to restore interoperability rapidly often leads to patching and to the adoption of immature solutions, contributing to deteriorate even more the interoperable environment. This dissertation proposes the adoption of NEGOSEIO, a framework that tackles interoperability issues by developing strong model-based knowledge assets and promoting continuous improvement and adaptation for increasing the sustainability of interoperability on enterprise systems. It presents the research motivations and the developed framework’s main blocks, which include model-based knowledge management, collaboration service-oriented architectures implemented over a cloud-based solution, and focusing particularly on its negotiation core mechanism to handle inconsistencies and solutions for the detected interoperability problems. It concludes by validating the research and the proposed framework, presenting its application in a real business case of aerospace mission design on the European Space Agency (ESA).FP7 ENSEMBLE, UNITE, MSEE and IMAGINE project

    A cooperative framework for molecular biology database integration using image object selection

    Get PDF
    The theme and the concept of 'Molecular Biology Database Integration' and the problems associated with this concept initiated the idea for this Ph.D research. The available technologies facilitate to analyse the data independently and discretely but it fails to integrate the data resources for more meaningful information. This along with the integration issues created the scope for this Ph.D research. The research has reviewed the 'database interoperability' problems and it has suggested a framework for integrating the molecular biology databases. The framework has proposed to develop a cooperative environment to share information on the basis of common purpose for the molecular biology databases. The research has also reviewed other implementation and interoperability issues for laboratory based, dedicated and target specific database. The research has addressed the following issues: diversity of molecular biology databases schemas, schema constructs and schema implementation multi-database query using image object keying, database integration technologies using context graph, automated navigation among these databases. This thesis has introduced a new approach for database implementation. It has introduced an interoperable component database concept to initiate multidatabase query on gene mutation data. A number of data models have been proposed for gene mutation data which is the basis for integrating the target specific component database to be integrated with the federated information system. The proposed data models are: data models for genetic trait analysis, classification of gene mutation data, pathological lesion data and laboratory data. The main feature of this component database is non-overlapping attributes and it will follow non-redundant integration approach as explained in the thesis. This will be achieved by storing attributes which will not have the union or intersection of any attributes that exist in public domain molecular biology databases. Unlike data warehousing technique, this feature is quite unique and novel. The component database will be integrated with other biological data sources for sharing information in a cooperative environment. This involves developing new tools. The thesis explains the role of these new tools which are: meta data extractor, mapping linker, query generator and result interpreter. These tools are used for a transparent integration without creating any global schema of the participating databases. The thesis has also established the concept of image object keying for multidatabase query and it has proposed a relevant algorithm for matching protein spot in gel electrophoresis image. An object spot in gel electrophoresis image will initiate the query when it is selected by the user. It matches the selected spot with other similar spots in other resource databases. This image object keying method is an alternative to conventional multidatabase query which requires writing complex SQL scripts. This method also resolve the semantic conflicts that exist among molecular biology databases. The research has proposed a new framework based on the context of the web data for interactions with different biological data resources. A formal description of the resource context is described in the thesis. The implementation of the context into Resource Document Framework (RDF) will be able to increase the interoperability by providing the description of the resources and the navigation plan for accessing the web based databases. A higher level construct is developed (has, provide and access) to implement the context into RDF for web interactions. The interactions within the resources are achieved by utilising an integration domain to extract the required information with a single instance and without writing any query scripts. The integration domain allows to navigate and to execute the query plan within the resource databases. An extractor module collects elements from different target webs and unify them as a whole object in a single page. The proposed framework is tested to find specific information e.g., information on Alzheimer's disease, from public domain biology resources, such as, Protein Data Bank, Genome Data Bank, Online Mendalian Inheritance in Man and local database. Finally, the thesis proposes further propositions and plans for future work
    • …
    corecore