10,332 research outputs found

    Bug or Not? Bug Report Classification Using N-Gram IDF

    Get PDF
    Previous studies have found that a significant number of bug reports are misclassified between bugs and non-bugs, and that manually classifying bug reports is a time-consuming task. To address this problem, we propose a bug reports classification model with N-gram IDF, a theoretical extension of Inverse Document Frequency (IDF) for handling words and phrases of any length. N-gram IDF enables us to extract key terms of any length from texts, these key terms can be used as the features to classify bug reports. We build classification models with logistic regression and random forest using features from N-gram IDF and topic modeling, which is widely used in various software engineering tasks. With a publicly available dataset, our results show that our N-gram IDF-based models have a superior performance than the topic-based models on all of the evaluated cases. Our models show promising results and have a potential to be extended to other software engineering tasks.Comment: 5 pages, ICSME 201

    Investigating Automatic Static Analysis Results to Identify Quality Problems: an Inductive Study

    Get PDF
    Background: Automatic static analysis (ASA) tools examine source code to discover "issues", i.e. code patterns that are symptoms of bad programming practices and that can lead to defective behavior. Studies in the literature have shown that these tools find defects earlier than other verification activities, but they produce a substantial number of false positive warnings. For this reason, an alternative approach is to use the set of ASA issues to identify defect prone files and components rather than focusing on the individual issues. Aim: We conducted an exploratory study to investigate whether ASA issues can be used as early indicators of faulty files and components and, for the first time, whether they point to a decay of specific software quality attributes, such as maintainability or functionality. Our aim is to understand the critical parameters and feasibility of such an approach to feed into future research on more specific quality and defect prediction models. Method: We analyzed an industrial C# web application using the Resharper ASA tool and explored if significant correlations exist in such a data set. Results: We found promising results when predicting defect-prone files. A set of specific Resharper categories are better indicators of faulty files than common software metrics or the collection of issues of all issue categories, and these categories correlate to different software quality attributes. Conclusions: Our advice for future research is to perform analysis on file rather component level and to evaluate the generalizability of categories. We also recommend using larger datasets as we learned that data sparseness can lead to challenges in the proposed analysis proces
    • …
    corecore