2,354 research outputs found

    Multi-dataset Training for Medical Image Segmentation as a Service

    Get PDF
    Deep Learning tools are widely used for medical image segmentation. The results produced by these techniques depend to a great extent on the data sets used to train the used network. Nowadays many cloud service providers offer the required resources to train networks and deploy deep learning networks. This makes the idea of segmentation as a cloud-based service attractive. In this paper we study the possibility of training, a generalized configurable, Keras U-Net to test the feasibility of training with images acquired, with specific instruments, to perform predictions on data from other instruments. We use, as our application example, the segmentation of Optic Disc and Cup which can be applied to glaucoma detection. We use two publicly available data sets (RIM-One V3 and DRISHTI) to train either independently or combining their data.Ministerio de Economía y Competitividad TEC2016-77785-

    TPU Cloud-Based Generalized U-Net for Eye Fundus Image Segmentation

    Get PDF
    Medical images from different clinics are acquired with different instruments and settings. To perform segmentation on these images as a cloud-based service we need to train with multiple datasets to increase the segmentation independency from the source. We also require an ef cient and fast segmentation network. In this work these two problems, which are essential for many practical medical imaging applications, are studied. As a segmentation network, U-Net has been selected. U-Net is a class of deep neural networks which have been shown to be effective for medical image segmentation. Many different U-Net implementations have been proposed.With the recent development of tensor processing units (TPU), the execution times of these algorithms can be drastically reduced. This makes them attractive for cloud services. In this paper, we study, using Google's publicly available colab environment, a generalized fully con gurable Keras U-Net implementation which uses Google TPU processors for training and prediction. As our application problem, we use the segmentation of Optic Disc and Cup, which can be applied to glaucoma detection. To obtain networks with a good performance, independently of the image acquisition source, we combine multiple publicly available datasets (RIM-One V3, DRISHTI and DRIONS). As a result of this study, we have developed a set of functions that allow the implementation of generalized U-Nets adapted to TPU execution and are suitable for cloud-based service implementation.Ministerio de Economía y Competitividad TEC2016-77785-
    corecore