147 research outputs found

    Nuclei & Glands Instance Segmentation in Histology Images: A Narrative Review

    Full text link
    Instance segmentation of nuclei and glands in the histology images is an important step in computational pathology workflow for cancer diagnosis, treatment planning and survival analysis. With the advent of modern hardware, the recent availability of large-scale quality public datasets and the community organized grand challenges have seen a surge in automated methods focusing on domain specific challenges, which is pivotal for technology advancements and clinical translation. In this survey, 126 papers illustrating the AI based methods for nuclei and glands instance segmentation published in the last five years (2017-2022) are deeply analyzed, the limitations of current approaches and the open challenges are discussed. Moreover, the potential future research direction is presented and the contribution of state-of-the-art methods is summarized. Further, a generalized summary of publicly available datasets and a detailed insights on the grand challenges illustrating the top performing methods specific to each challenge is also provided. Besides, we intended to give the reader current state of existing research and pointers to the future directions in developing methods that can be used in clinical practice enabling improved diagnosis, grading, prognosis, and treatment planning of cancer. To the best of our knowledge, no previous work has reviewed the instance segmentation in histology images focusing towards this direction.Comment: 60 pages, 14 figure

    Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy Images

    Get PDF
    Cataloged from PDF version of article.More rapid and accurate high-throughput screening in molecular cellular biology research has become possible with the development of automated microscopy imaging, for which cell nucleus segmentation commonly constitutes the core step. Although several promising methods exist for segmenting the nuclei of monolayer isolated and less-confluent cells, it still remains an open problem to segment the nuclei of more-confluent cells, which tend to grow in overlayers. To address this problem, we propose a new model-based nucleus segmentation algorithm. This algorithm models how a human locates a nucleus by identifying the nucleus boundaries and piecing them together. In this algorithm, we define four types of primitives to represent nucleus boundaries at different orientations and construct an attributed relational graph on the primitives to represent their spatial relations. Then, we reduce the nucleus identification problem to finding predefined structural patterns in the constructed graph and also use the primitives in region growing to delineate the nucleus borders. Working with fluorescence microscopy images, our experiments demonstrate that the proposed algorithm identifies nuclei better than previous nucleus segmentation algorithms

    Methods for Analysing Endothelial Cell Shape and Behaviour in Relation to the Focal Nature of Atherosclerosis

    Get PDF
    The aim of this thesis is to develop automated methods for the analysis of the spatial patterns, and the functional behaviour of endothelial cells, viewed under microscopy, with applications to the understanding of atherosclerosis. Initially, a radial search approach to segmentation was attempted in order to trace the cell and nuclei boundaries using a maximum likelihood algorithm; it was found inadequate to detect the weak cell boundaries present in the available data. A parametric cell shape model was then introduced to fit an equivalent ellipse to the cell boundary by matching phase-invariant orientation fields of the image and a candidate cell shape. This approach succeeded on good quality images, but failed on images with weak cell boundaries. Finally, a support vector machines based method, relying on a rich set of visual features, and a small but high quality training dataset, was found to work well on large numbers of cells even in the presence of strong intensity variations and imaging noise. Using the segmentation results, several standard shear-stress dependent parameters of cell morphology were studied, and evidence for similar behaviour in some cell shape parameters was obtained in in-vivo cells and their nuclei. Nuclear and cell orientations around immature and mature aortas were broadly similar, suggesting that the pattern of flow direction near the wall stayed approximately constant with age. The relation was less strong for the cell and nuclear length-to-width ratios. Two novel shape analysis approaches were attempted to find other properties of cell shape which could be used to annotate or characterise patterns, since a wide variability in cell and nuclear shapes was observed which did not appear to fit the standard parameterisations. Although no firm conclusions can yet be drawn, the work lays the foundation for future studies of cell morphology. To draw inferences about patterns in the functional response of cells to flow, which may play a role in the progression of disease, single-cell analysis was performed using calcium sensitive florescence probes. Calcium transient rates were found to change with flow, but more importantly, local patterns of synchronisation in multi-cellular groups were discernable and appear to change with flow. The patterns suggest a new functional mechanism in flow-mediation of cell-cell calcium signalling

    Beyond imaging with coherent anti-Stokes Raman scattering microscopy

    Get PDF
    La microscopie optique permet de visualiser des échantillons biologiques avec une bonne sensibilité et une résolution spatiale élevée tout en interférant peu avec les échantillons. La microscopie par diffusion Raman cohérente (CARS) est une technique de microscopie non linéaire basée sur l’effet Raman qui a comme avantage de fournir un mécanisme de contraste endogène sensible aux vibrations moléculaires. La microscopie CARS est maintenant une modalité d’imagerie reconnue, en particulier pour les expériences in vivo, car elle élimine la nécessité d’utiliser des agents de contraste exogènes, et donc les problèmes liés à leur distribution, spécificité et caractère invasif. Cependant, il existe encore plusieurs obstacles à l’adoption à grande échelle de la microscopie CARS en biologie et en médecine : le coût et la complexité des systèmes actuels, les difficultés d’utilisation et d’entretient, la rigidité du mécanisme de contraste, la vitesse de syntonisation limitée et le faible nombre de méthodes d’analyse d’image adaptées. Cette thèse de doctorat vise à aller au-delà de certaines des limites actuelles de l’imagerie CARS dans l’espoir que cela encourage son adoption par un public plus large. Tout d’abord, nous avons introduit un nouveau système d’imagerie spectrale CARS ayant une vitesse de syntonisation de longueur d’onde beaucoup plus rapide que les autres techniques similaires. Ce système est basé sur un laser à fibre picoseconde synchronisé qui est à la fois robuste et portable. Il peut accéder à des lignes de vibration Raman sur une plage importante (2700–2950 cm-1) à des taux allant jusqu’à 10 000 points spectrales par seconde. Il est parfaitement adapté pour l’acquisition d’images spectrales dans les tissus épais. En second lieu, nous avons proposé une nouvelle méthode d’analyse d’images pour l’évaluation de la structure de la myéline dans des images de sections longitudinales de moelle épinière. Nous avons introduit un indicateur quantitatif sensible à l’organisation de la myéline et démontré comment il pourrait être utilisé pour étudier certaines pathologies. Enfin, nous avons développé une méthode automatisé pour la segmentation d’axones myélinisés dans des images CARS de coupes transversales de tissu nerveux. Cette méthode a été utilisée pour extraire des informations morphologique des fibres nerveuses dans des images CARS de grande échelle.Optical-based microscopy techniques can sample biological specimens using many contrast mechanisms providing good sensitivity and high spatial resolution while minimally interfering with the samples. Coherent anti-Stokes Raman scattering (CARS) microscopy is a nonlinear microscopy technique based on the Raman effect. It shares common characteristics of other optical microscopy modalities with the added benefit of providing an endogenous contrast mechanism sensitive to molecular vibrations. CARS is now recognized as a great imaging modality, especially for in vivo experiments since it eliminates the need for exogenous contrast agents, and hence problems related to the delivery, specificity, and invasiveness of those markers. However, there are still several obstacles preventing the wide-scale adoption of CARS in biology and medicine: cost and complexity of current systems as well as difficulty to operate and maintain them, lack of flexibility of the contrast mechanism, low tuning speed and finally, poor accessibility to adapted image analysis methods. This doctoral thesis strives to move beyond some of the current limitations of CARS imaging in the hope that it might encourage a wider adoption of CARS as a microscopy technique. First, we introduced a new CARS spectral imaging system with vibrational tuning speed many orders of magnitude faster than other narrowband techniques. The system presented in this original contribution is based on a synchronized picosecond fibre laser that is both robust and portable. It can access Raman lines over a significant portion of the highwavenumber region (2700–2950 cm-1) at rates of up to 10,000 spectral points per second and is perfectly suitable for the acquisition of CARS spectral images in thick tissue. Secondly, we proposed a new image analysis method for the assessment of myelin health in images of longitudinal sections of spinal cord. We introduced a metric sensitive to the organization/disorganization of the myelin structure and showed how it could be used to study pathologies such as multiple sclerosis. Finally, we have developped a fully automated segmentation method specifically designed for CARS images of transverse cross sections of nerve tissue.We used our method to extract nerve fibre morphology information from large scale CARS images

    An Adaptive Algorithm to Identify Ambiguous Prostate Capsule Boundary Lines for Three-Dimensional Reconstruction and Quantitation

    Get PDF
    Currently there are few parameters that are used to compare the efficiency of different methods of cancerous prostate surgical removal. An accurate assessment of the percentage and depth of extra-capsular soft tissue removed with the prostate by the various surgical techniques can help surgeons determine the appropriateness of surgical approaches. Additionally, an objective assessment can allow a particular surgeon to compare individual performance against a standard. In order to facilitate 3D reconstruction and objective analysis and thus provide more accurate quantitation results when analyzing specimens, it is essential to automatically identify the capsule line that separates the prostate gland tissue from its extra-capsular tissue. However the prostate capsule is sometimes unrecognizable due to the naturally occurring intrusion of muscle and connective tissue into the prostate gland. At these regions where the capsule disappears, its contour can be arbitrarily reconstructed by drawing a continuing contour line based on the natural shape of the prostate gland. Presented here is a mathematical model that can be used in deciding the missing part of the capsule. This model approximates the missing parts of the capsule where it disappears to a standard shape by using a Generalized Hough Transform (GHT) approach to detect the prostate capsule. We also present an algorithm based on a least squares curve fitting technique that uses a prostate shape equation to merge previously detected capsule parts with the curve equation to produce an approximated curve that represents the prostate capsule. We have tested our algorithms using three shapes on 13 prostate slices that are cut at different locations from the apex and the results are promisin
    • …
    corecore