164 research outputs found

    Segmentation of Melanoma Skin Lesion Using Perceptual Color Difference Saliency with Morphological Analysis

    Get PDF
    The prevalence of melanoma skin cancer disease is rapidly increasing as recorded death cases of its patients continue to annually escalate. Reliable segmentation of skin lesion is one essential requirement of an efficient noninvasive computer aided diagnosis tool for accelerating the identification process of melanoma. This paper presents a new algorithm based on perceptual color difference saliency along with binary morphological analysis for segmentation of melanoma skin lesion in dermoscopic images. The new algorithm is compared with existing image segmentation algorithms on benchmark dermoscopic images acquired from public corpora. Results of both qualitative and quantitative evaluations of the new algorithm are encouraging as the algorithm performs excellently in comparison with the existing image segmentation algorithms

    Supervised saliency map driven segmentation of lesions in dermoscopic images

    Get PDF
    Lesion segmentation is the first step in most automatic melanoma recognition systems. Deficiencies and difficulties in dermoscopic images such as color inconstancy, hair occlusion, dark corners, and color charts make lesion segmentation an intricate task. In order to detect the lesion in the presence of these problems, we propose a supervised saliency detection method tailored for dermoscopic images based on the discriminative regional feature integration (DRFI). A DRFI method incorporates multilevel segmentation, regional contrast, property, background descriptors, and a random forest regressor to create saliency scores for each region in the image. In our improved saliency detection method, mDRFI, we have added some new features to regional property descriptors. Also, in order to achieve more robust regional background descriptors, a thresholding algorithm is proposed to obtain a new pseudo-background region. Findings reveal that mDRFI is superior to DRFI in detecting the lesion as the salient object in dermoscopic images. The proposed overall lesion segmentation framework uses detected saliency map to construct an initial mask of the lesion through thresholding and postprocessing operations. The initial mask is then evolving in a level set framework to fit better on the lesion's boundaries. The results of evaluation tests on three public datasets show that our proposed segmentation method outperforms the other conventional state-of-the-art segmentation algorithms and its performance is comparable with most recent approaches that are based on deep convolutional neural networks

    Step-wise Integration of Deep Class-specific Learning for Dermoscopic Image Segmentation

    Get PDF
    The segmentation of abnormal regions on dermoscopic images is an important step for automated computer aided diagnosis (CAD) of skin lesions. Recent methods based on fully convolutional networks (FCN) have been very successful for dermoscopic image segmentation. However, they tend to overfit to the visual characteristics that are present in the dominant non-melanoma studies and therefore, perform poorly on the complex visual characteristics exhibited by melanoma studies, which usually consists of fuzzy boundaries and heterogeneous textures. In this paper, we propose a new method for automated skin lesion segmentation that overcomes these limitations via a novel deep class-specific learning approach which learns the important visual characteristics of the skin lesions of each individual class (melanoma vs non-melanoma) on an individual basis. We also introduce a new probability-based, step-wise integration to combine complementary segmentation results derived from individual class-specific learning models. We achieved an average Dice coefficient of 85.66% on the ISBI 2017 Skin Lesion Challenge (SLC), 91.77% on the ISBI 2016 SLC and 92.10% on the PH2 datasets with corresponding Jaccard indices of 77.73%, 85.92% and 85.90%, respectively, for the same datasets. Our experiments on three well-established public benchmark datasets demonstrate that our method is more effective than other state-of-the-art methods for skin lesion segmentation

    A deep residual architecture for skin lesion segmentation

    Get PDF
    In this paper, we propose an automatic approach to skin lesion region segmentation based on a deep learning architecture with multi-scale residual connections. The architecture of the proposed model is based on UNet [22] with residual connections to maximise the learning capability and performance of the network. The information lost in the encoder stages due to the max-pooling layer at each level is preserved through the multi-scale residual connections. To corroborate the efficacy of the proposed model, extensive experiments are conducted on the ISIC 2017 challenge dataset without using any external dermatologic image set. An extensive comparative analysis is presented with contemporary methodologies to highlight the promising performance of the proposed methodology

    On Interpretability of Deep Learning based Skin Lesion Classifiers using Concept Activation Vectors

    Full text link
    Deep learning based medical image classifiers have shown remarkable prowess in various application areas like ophthalmology, dermatology, pathology, and radiology. However, the acceptance of these Computer-Aided Diagnosis (CAD) systems in real clinical setups is severely limited primarily because their decision-making process remains largely obscure. This work aims at elucidating a deep learning based medical image classifier by verifying that the model learns and utilizes similar disease-related concepts as described and employed by dermatologists. We used a well-trained and high performing neural network developed by REasoning for COmplex Data (RECOD) Lab for classification of three skin tumours, i.e. Melanocytic Naevi, Melanoma and Seborrheic Keratosis and performed a detailed analysis on its latent space. Two well established and publicly available skin disease datasets, PH2 and derm7pt, are used for experimentation. Human understandable concepts are mapped to RECOD image classification model with the help of Concept Activation Vectors (CAVs), introducing a novel training and significance testing paradigm for CAVs. Our results on an independent evaluation set clearly shows that the classifier learns and encodes human understandable concepts in its latent representation. Additionally, TCAV scores (Testing with CAVs) suggest that the neural network indeed makes use of disease-related concepts in the correct way when making predictions. We anticipate that this work can not only increase confidence of medical practitioners on CAD but also serve as a stepping stone for further development of CAV-based neural network interpretation methods.Comment: Accepted for the IEEE International Joint Conference on Neural Networks (IJCNN) 202
    corecore