599 research outputs found

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    Evaluation of Kermeta for Solving Graph-based Problems

    Get PDF
    Kermeta is a meta-language for specifying the structure and behavior of graphs of interconnected objects called models. In this paper,\ud we show that Kermeta is relatively suitable for solving three graph-based\ud problems. First, Kermeta allows the specification of generic model\ud transformations such as refactorings that we apply to different metamodels\ud including Ecore, Java, and Uml. Second, we demonstrate the extensibility\ud of Kermeta to the formal language Alloy using an inter-language model\ud transformation. Kermeta uses Alloy to generate recommendations for\ud completing partially specified models. Third, we show that the Kermeta\ud compiler achieves better execution time and memory performance compared\ud to similar graph-based approaches using a common case study. The\ud three solutions proposed for those graph-based problems and their\ud evaluation with Kermeta according to the criteria of genericity,\ud extensibility, and performance are the main contribution of the paper.\ud Another contribution is the comparison of these solutions with those\ud proposed by other graph-based tools

    Automatic Test Generation for Space

    Get PDF
    The European Space Agency (ESA) uses an engine to perform tests in the Ground Segment infrastructure, specially the Operational Simulator. This engine uses many different tools to ensure the development of regression testing infrastructure and these tests perform black-box testing to the C++ simulator implementation. VST (VisionSpace Technologies) is one of the companies that provides these services to ESA and they need a tool to infer automatically tests from the existing C++ code, instead of writing manually scripts to perform tests. With this motivation in mind, this paper explores automatic testing approaches and tools in order to propose a system that satisfies VST needs

    1st Workshop on Refactoring Tools (WRT'07) : Proceedings

    Get PDF

    A UML/OCL framework for the analysis of fraph transformation rules

    Get PDF
    In this paper we present an approach for the analysis of graph transformation rules based on an intermediate OCL representation. We translate different rule semantics into OCL, together with the properties of interest (like rule applicability, conflicts or independence). The intermediate representation serves three purposes: (i) it allows the seamless integration of graph transformation rules with the MOF and OCL standards, and enables taking the meta-model and its OCL constraints (i.e. well-formedness rules) into account when verifying the correctness of the rules; (ii) it permits the interoperability of graph transformation concepts with a number of standards-based model-driven development tools; and (iii) it makes available a plethora of OCL tools to actually perform the rule analysis. This approach is especially useful to analyse the operational semantics of Domain Specific Visual Languages. We have automated these ideas by providing designers with tools for the graphical specification and analysis of graph transformation rules, including a backannotation mechanism that presents the analysis results in terms of the original language notation

    Search‐based model transformations

    Get PDF
    Model transformations are an important cornerstone of model‐driven engineering, a discipline which facilitates the abstraction of relevant information of a system as models. The success of the final system mainly depends on the optimization of these models through model transformations. Currently, the application of transformations is realized either by following the apply‐as‐long‐as‐possible strategy or by the provision of explicit rule orchestrations. This implies two main limitations. First, the optimization objectives are implicitly hidden in the transformation rules and their orchestration. Second, manually finding the best orchestration for a particular scenario is a major challenge due to the high number of possible combinations. To overcome these limitations, we present a novel framework that builds on the non‐intrusive integration of optimization and model transformation technologies. In particular, we formulate the transformation orchestration task as an optimization problem, which allows for the efficient exploration of the transformation space and explication of the transformation objectives. Our generic framework provides several search algorithms and guides the user in providing a proper search configuration. We present different instantiations of our framework to demonstrate its feasibility, applicability, and benefits using several case studiesEuropean Commission ICT Policy Support Programme 317859Ministerio de Economia y Competitividad TIN2015-70560-RJunta de Andalucía P10-TIC-5960Junta de Andalucía P12-TIC-186

    Testing and test-driven development of conceptual schemas

    Get PDF
    The traditional focus for Information Systems (IS) quality assurance relies on the evaluation of its implementation. However, the quality of an IS can be largely determined in the first stages of its development. Several studies reveal that more than half the errors that occur during systems development are requirements errors. A requirements error is defined as a mismatch between requirements specification and stakeholders¿ needs and expectations. Conceptual modeling is an essential activity in requirements engineering aimed at developing the conceptual schema of an IS. The conceptual schema is the general knowledge that an IS needs to know in order to perform its functions. A conceptual schema specification has semantic quality when it is valid and complete. Validity means that the schema is correct (the knowledge it defines is true for the domain) and relevant (the knowledge it defines is necessary for the system). Completeness means that the conceptual schema includes all relevant knowledge. The validation of a conceptual schema pursues the detection of requirements errors in order to improve its semantic quality. Conceptual schema validation is still a critical challenge in requirements engineering. In this work we contribute to this challenge, taking into account that, since conceptual schemas of IS can be specified in executable artifacts, they can be tested. In this context, the main contributions of this Thesis are (1) an approach to test conceptual schemas of information systems, and (2) a novel method for the incremental development of conceptual schemas supported by continuous test-driven validation. As far as we know, this is the first work that proposes and implements an environment for automated testing of UML/OCL conceptual schemas, and the first work that explores the use of test-driven approaches in conceptual modeling. The testing of conceptual schemas may be an important and practical means for their validation. It allows checking correctness and completeness according to stakeholders¿ needs and expectations. Moreover, in conjunction with the automatic check of basic test adequacy criteria, we can also analyze the relevance of the elements defined in the schema. The testing environment we propose requires a specialized language for writing tests of conceptual schemas. We defined the Conceptual Schema Testing Language (CSTL), which may be used to specify automated tests of executable schemas specified in UML/OCL. We also describe a prototype implementation of a test processor that makes feasible the approach in practice. The conceptual schema testing approach supports test-last validation of conceptual schemas, but it also makes sense to test incomplete conceptual schemas while they are developed. This fact lays the groundwork of Test-Driven Conceptual Modeling (TDCM), which is our second main contribution. TDCM is a novel conceptual modeling method based on the main principles of Test-Driven Development (TDD), an extreme programming method in which a software system is developed in short iterations driven by tests. We have applied the method in several case studies, in the context of Design Research, which is the general research framework we adopted. Finally, we also describe an integration approach of TDCM into a broad set of software development methodologies, including the Unified Process development methodology, MDD-based approaches, storytest-driven agile methods and goal and scenario-oriented requirements engineering methods.Els enfocaments per assegurar la qualitat deis sistemes d'informació s'han basal tradicional m en! en l'avaluació de la seva implementació. No obstan! aix6, la qualitat d'un sis tema d'informació pot ser ampliament determinada en les primeres fases del seu desenvolupament. Diversos estudis indiquen que més de la meitat deis errors de software són errors de requisits . Un error de requisit es defineix com una desalineació entre l'especificació deis requisits i les necessitats i expectatives de les parts im plicades (stakeholders ). La modelització conceptual és una activitat essencial en l'enginyeria de requisits , l'objectiu de la qual és desenvolupar !'esquema conceptual d'un sistema d'informació. L'esquema conceptual és el coneixement general que un sistema d'informació requereix per tal de desenvolupar les seves funcions . Un esquema conceptual té qualitat semantica quan és va lid i complet. La valides a implica que !'esquema sigui correcte (el coneixement definit és cert peral domini) i rellevant (el coneixement definit és necessari peral sistema). La completes a significa que !'esquema conceptual inclou tot el coneixement rellevant. La validació de !'esquema conceptual té coma objectiu la detecció d'errors de requisits per tal de millorar la qualitat semantica. La validació d'esquemes conceptuals és un repte crític en l'enginyeria de requisits . Aquesta te si contribueix a aquest repte i es basa en el fet que els es quemes conceptuals de sistemes d'informació poden ser especificats en artefactes executables i, per tant, poden ser provats. Les principals contribucions de la te si són (1) un enfocament pera les pro ves d'esquemes conceptuals de sistemes d'informació, i (2) una metodología innovadora pel desenvolupament incremental d'esquemes conceptuals assistit per una validació continuada basada en proves . Les pro ves d'esquemes conceptuals poden ser una im portant i practica técnica pera la se va validació, jaque permeten provar la correctesa i la completesa d'acord ambles necessitats i expectatives de les parts interessades. En conjunció amb la comprovació d'un conjunt basic de criteris d'adequació de les proves, també podem analitzar la rellevancia deis elements definits a !'esquema. L'entorn de test proposat inclou un llenguatge especialitzat per escriure proves automatitzades d'esquemes conceptuals, anomenat Conceptual Schema Testing Language (CSTL). També hem descrit i implementa! a un prototip de processador de tes tos que fa possible l'aplicació de l'enfocament proposat a la practica. D'acord amb l'estat de l'art en validació d'esquemes conceptuals , aquest és el primer treball que proposa i implementa un entorn pel testing automatitzat d'esquemes conceptuals definits en UML!OCL. L'enfocament de proves d'esquemes conceptuals permet dura terme la validació d'esquemes existents , pero també té sentit provar es quemes conceptuals incomplets m entre estant sent desenvolupats. Aquest fet és la base de la metodología Test-Driven Conceptual Modeling (TDCM), que és la segona contribució principal. El TDCM és una metodología de modelització conceptual basada en principis basics del Test-Driven Development (TDD), un métode de programació en el qual un sistema software és desenvolupat en petites iteracions guiades per proves. També hem aplicat el métode en diversos casos d'estudi en el context de la metodología de recerca Design Science Research. Finalment, hem proposat enfocaments d'integració del TDCM en diverses metodologies de desenvolupament de software

    Approaching the Model-Driven Generation of Feedback to Remove Software Performance Flaws

    Full text link
    Abstract—The problem of interpreting results of perfor-mance analysis and providing feedback on software models to overcome performance flaws is probably the most critical open issue in the field of software performance engineering. Automation in this step would help to introduce perfor-mance validation as an integrated activity in the software lifecycle, without dramatically affecting the daily practices of software developers. In this paper we approach the problem with model-driven techniques, on which we build a general solution. Basing on the concept of performance antipatterns, that are bad practices in software modeling leading to performance flaws, we introduce metamodels and transformations that can support the whole process of flaw detection and solution. The approach that we propose is notation-independent and can be embedded in any (existing or future) concrete modeling notation by using weaving models and automatically generated model transformations. Finally, we discuss the issues opened from this work and the future achievements that are at the hand in this domain thanks to model-driven techniques

    Refactoring OCL annotated UML class diagrams

    Get PDF
    Refactoring of UML class diagrams is an emerging research topic and heavily inspired by refactoring of program code written in object-oriented implementation languages. Current class diagram refactoring techniques concentrate on the diagrammatic part but neglect OCL constraints that might become syntactically incorrect by changing the underlying class diagram. This paper formalizes the most important refactoring rules for class diagrams and classifies them with respect to their impact on attached OCL constraints. For refactoring rules that have an impact on OCL constraints, we formalize the necessary changes of the attached constraints. Our refactoring rules are specified in a graph-grammar inspired formalism. They have been implemented as QVT transformation rules. We finally discuss for our refactoring rules the problem of syntax preservation and show, by using the KeY-system, how this can be resolve
    corecore