1,161 research outputs found

    Object orientated automated image analysis: quantitative and qualitative estimation of inflammation in mouse lung

    Get PDF
    Historically, histopathology evaluation is performed by a pathologist generating a qualitative assessment on thin tissue sections on glass slides. In the past decade, there has been a growing interest for tools able to reduce human subjectivity and improve workload. Whole slide scanning technology combined with object orientated image analysis can offer the capacity of generating fast and reliable results. In the present study, we combined the use of these emerging technologies to characterise a mouse model for chronic asthma. We monitored the inflammatory changes over five weeks by measuring the number of neutrophils and eosinophils present in the tissue, as well as, the bronchiolar associated lymphoid tissue (BALT) area on whole lungs sections. We showed that inflammation assessment could be automated efficiently and reliably. In comparison to human evaluation performed on the same set of sections, computer generated data was more descriptive and fully quantitative. Moreover optimisation of our detection parameters allowed us to be to more sensitive and to generate data in a larger dynamic range to traditional experimental evaluation, such as bronchiolar lavage (BAL) inflammatory cell counts obtained by flow cytometry. We also took advantage of the fact that we could increase the number of samples to be analysed within a day. Such optimisation allowed us to determine the best study design and experimental conditions in order to increase statistical significance between groups. In conclusion, we showed that combination of whole slide digital scanning and image analysis could be fully automated and deliver more descriptive and biologically relevant data over traditional methods evaluating histopathological pulmonary changes observed in this mouse model of chronic asthma

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Stimulating angiogenesis into biomaterials through the delivery of growth factors

    Get PDF
    lschemic disease in form of ischemic heart disease (IHD), ischemic stroke and peripheral arterial disease (PAD) due to atherosclerosis represents a massive clinical and economic burden to healthcare and is currently the number one cause of death in the world. Treatment modalities for peripheral arterial disease include bypass surgery involving autologous vein or synthetic materials such as ePTFE. Long term patency of small diameter vascular grafts used for infra-inguinal reconstructions, however, is below 50 % 5 years after implantation. Therefore, novel vascular graft concepts and materials are needed. The concept of transmural in vivo endothelialisation of vascular grafts holds great promise for increasing long term patency. To achieve complete luminal endothelial cell coverage and optimal integration of the porous synthetic graft material into the host tissue, transmural ingrowth of tissue and vasa vasorum might have to be facilitated. Since VEGF1ss and PDGF-BB are growth factors known to stimulate and consolidate angiogenesis, this PhD thesis hypothesized, that neovascularisation of porous polyurethane (PU) can be increased by delivery of vascular endothelial growth factor (VEGF1ss) and platelet derived growth factor (PDGF-BB). To prove this hypothesis, subcutaneous implantation of PU discs was established as a valid, reproducible, relatively simple and quantifiable neovascularisation model. Three different ways of growth factor delivery were investigated. The gene encoding for human VEGF15s was cloned into the genome of adeno associated viruses (AAV), which served as a vector for gene transduction of autologous wound healing cells in vivo using the "Gene Activated Matrix" approach. Genetically modified matrix embedded AAV-VEGF155 was loaded into porous PU and transduced autologous ingrowing wound cells. In contrast to the excellent transduction efficiency in myocytes, AA V showed a poor tropism for wound healing cells. The second approach to increase neovascularisation into porous PU was the surface modification of PU by covalent attachment of nitrous acid degraded heparin. Neovascularisation into the biomaterial was increased by 77 % after 10 days of subcutaneous implantation. Since certain angiogenic growth factors show a high affinity for heparin, additional loading of heparin surface modified PU with VEGF165 increased neovascularisation even further up to 115 % at 10 days compared to control. Dual growth factor delivery of VEGF 165 and PDGF-BB not only initiated increased vascularisation of porous PU, but also created a stable vascular network 2 months after implantation. In contrast, PU loaded with VEGF165 alone showed regression of total vascular area of 61 % compared to vascular area at 10 days. Thirdly, to study the effects of controlled, prolonged growth factor delivery, a "Neovascularisation Construct" was developed which was implanted subcutaneously in rats. The construct consisted of an osmotic mini pump and a tube of porous PU lined with ePTFE, into which a defined amount of VEGF16s was pumped for 10 days. After implantation, granulation tissue was growing into the pores of the PU and neovascular area was increased up to 265 % compared to PBS control. Furthermore, using different growth factor concentration, a dose dependency was shown. In addition, this thesis investigated the functional perfusion of the micro vascular network growing into PU by four different vascular quantification techniques. lntravital perfusion with biotinylated lycopersicon esculentum followed by microscopical analysis, vascular corrosion casting quantified by scanning electron microscopy as well as the novel micro-CT analysis of silicone rubber perfused vessels were compared to conventional immunhistochemical analysis of endothelial cells by CD31. Interestingly, PBS perfused "Neovascularisation Constructs" showed a relatively poor perfusion; therefore CD31 immunohistochemistry "overestimated" functional neovascularisation 3 fold. All perfusion techniques indicated a strong effect of VEGF 165 delivery on vessel perfusion (10 to 20 fold increases of vascular area and volume compared to PBS control). Micro-CT scanning was shown to be an excellent tool to study micro vascular networks in a three-dimensional fashion across the whole length of the sample in a limited amount of time and to provide reliable and reproducible data on vessel density, vascular volume, and connectivity. Since resolution is still limited today to about 10 μm using a commercially available bench top scanner, this new technology still needs to be complemented by immunohistochemistry and perfusion studies such as lectin perfusion and corrosion casting. In summary, the induction of neovascularisation was achieved by heparin surface modification alone, which was even increased through additional delivery of growth factors into the biomaterial PU. The development of a stable micro vascular network at 2 months was achieved and the functionality was shown using four different, independent techniques including the novel micro-CT scanning of neovascularisation into biomaterials. Towards the development of an in vivo, spontaneously and transmurally endothelialising vascular graft with superior long-term patency further investigations are necessary. As an initial step, increased spontaneous neovascularisation of the possible graft material polyurethane was achieved. Future steps are clearly indicated to study the translation of increased neovascularisation of the biomaterial polyurethane towards increased endothelialisation in a vascular graft model

    Adipose-derived stromal vascular fraction therapy improves age-related adrenergic mediated microvascular dysfunction and increases revascularization potential following injury.

    Get PDF
    The role of the microcirculation is to balance blood flow and oxygen delivery to meet local metabolic and oxygen demands. With advancing age, the health of the endothelium declines leading to improper augmentation of the microcirculation; decreasing vasoreactivity and angiogenic potential which can further increase the risk of ischemia. The multiple contributing factors that drive the decline in endothelial health with age make traditional pharmacological interventions challenging whereas cell-based therapies can exert multifactorial gains. Adipose-derived stromal vascular fraction (SVF) is an emerging therapeutic for its easily accessible, autologous, anti-inflammatory, and angiogenic properties. It is a heterogenous population comprised of leukocyte and vascular cell populations as well as a small population of mesenchymal stem cells. Coronary perfusion and isolated coronary microvessels from young, old, and old treated with young SVF, female Fisher-344 rats were examined for health and functionality to beta-adrenergic receptor agonists (b-AR). Advancing age decreases coronary perfusion and vasoreactivity to b1-AR agonist norepinephrine (NE). A one-time tail vein injection of 10 million SVF cells 4 weeks prior reversed the age-related impairment in coronary microvascular dysfunction. Furthermore, isolated coronary microvessels from young, old, and old treated with SVF rats were examined for age- and SVF-related alterations in b1-AR cell signaling. Advancing age reduced the expression of b1-ARs on coronary microvessels and increased the expression of vasodilatory inhibitors, GRK2 and Gai. While SVF fully restored the b1-AR population it only marginally mitigated the inhibitor expression back to young control levels. Advancing age altered the cellular composition of SVF promoting a more pro-inflammatory phenotype with increased M1 macrophages and various types of T cells with a reduced mesenchymal stem cell population. Intravenously injected SVF can disseminate and engraft into the microcirculation of mesenteric windows; connective tissues located along the small intestines. SVF from young donors can significantly increase vascularized area of an aged mesenteric window subjected to a hypoxic-like injury compared to aged SVF which only marginally improves vascular area. Advancing age can drive a decline in the functionality of the microcirculation. SVF therapy offers a promising vascular therapeutic reversing the age-related dysfunction, increasing organ perfusion, and promoting revascularization following injury

    Traitement anti-angiogène par des vecteurs nanosphériques bioadhésifs

    Full text link
    Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
    corecore