644 research outputs found

    Advanced mobile network monitoring and automated optimization methods

    Get PDF
    The operation of mobile networks is a complex task with the networks serving a large amount of subscribers with both voice and data services, containing extensive sets of elements, generating extensive amounts of measurement data and being controlled by a large amount of parameters. The objective of this thesis was to ease the operation of mobile networks by introducing advanced monitoring and automated optimization methods. In the monitoring domain the thesis introduced visualization and anomaly detection methods that were applied to detect intrusions, mal-functioning network elements and cluster network elements to do parameter optimization on network-element-cluster level. A key component in the monitoring methods was the Self-Organizing Map. In the automated optimization domain several rule-based Wideband CDMA radio access parameter optimization methods were introduced. The methods tackled automated optimization in areas such as admission control, handover control and mobile base station cell size setting. The results from test usage of the monitoring methods indicated good performance and simulations indicated that the automated optimization methods enable significant improvements in mobile network performance. The presented methods constitute promising feature candidates for the mobile network management system.reviewe

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Intra-Cluster Autonomous Coverage Optimization For Dense LTE-A Networks

    Full text link
    Self Organizing Networks (SONs) are considered as vital deployments towards upcoming dense cellular networks. From a mobile carrier point of view, continuous coverage optimization is critical for better user perceptions. The majority of SON contributions introduce novel algorithms that optimize specific performance metrics. However, they require extensive processing delays and advanced knowledge of network statistics that may not be available. In this work, a progressive Autonomous Coverage Optimization (ACO) method combined with adaptive cell dimensioning is proposed. The proposed method emphasizes the fact that the effective cell coverage is a variant on actual user distributions. ACO algorithm builds a generic Space-Time virtual coverage map per cell to detect coverage holes in addition to limited or extended coverage conditions. Progressive levels of optimization are followed to timely resolve coverage issues with maintaining optimization stability. Proposed ACO is verified under both simulations and practical deployment in a pilot cluster for a worldwide mobile carrier. Key Performance Indicators show that proposed ACO method significantly enhances system coverage and performance.Comment: conferenc

    Self Organising Network Techniques to Maximise Traffic Offload onto a 3G/WCDMA Small Cell Network using MDT UE Measurement Reports

    Get PDF
    This paper presents a number of Self-Organising Network (SON) based methods using a 3GPP Minimisation of Drive Testing (MDT) approach or similar and the analysis of these geo-located UE measurements to maximise traffic offload onto lamppost mounted 3G/WCDMA microcells. Simulations have been performed for a real 3G/WCDMA microcell deployment in a busy area of central London and the results suggest that for the network studied a traffic increase on the microcell layer of up to 175% is achievable through the novel SON methods presented

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    An efficient genetic algorithm for large-scale transmit power control of dense and robust wireless networks in harsh industrial environments

    Get PDF
    The industrial wireless local area network (IWLAN) is increasingly dense, due to not only the penetration of wireless applications to shop floors and warehouses, but also the rising need of redundancy for robust wireless coverage. Instead of simply powering on all access points (APs), there is an unavoidable need to dynamically control the transmit power of APs on a large scale, in order to minimize interference and adapt the coverage to the latest shadowing effects of dominant obstacles in an industrial indoor environment. To fulfill this need, this paper formulates a transmit power control (TPC) model that enables both powering on/off APs and transmit power calibration of each AP that is powered on. This TPC model uses an empirical one-slope path loss model considering three-dimensional obstacle shadowing effects, to enable accurate yet simple coverage prediction. An efficient genetic algorithm (GA), named GATPC, is designed to solve this TPC model even on a large scale. To this end, it leverages repair mechanism-based population initialization, crossover and mutation, parallelism as well as dedicated speedup measures. The GATPC was experimentally validated in a small-scale IWLAN that is deployed a real industrial indoor environment. It was further numerically demonstrated and benchmarked on both small- and large-scales, regarding the effectiveness and the scalability of TPC. Moreover, sensitivity analysis was performed to reveal the produced interference and the qualification rate of GATPC in function of varying target coverage percentage as well as number and placement direction of dominant obstacles. (C) 2018 Elsevier B.V. All rights reserved

    Cell degradation detection based on an inter-cell approach

    Get PDF
    Fault management is a crucial part of cellular network management systems. The status of the base stations is usually monitored by well-defined key performance indicators (KPIs). The approaches for cell degradation detection are based on either intra-cell or inter-cell analysis of the KPIs. In intra-cell analysis, KPI profiles are built based on their local history data whereas in inter-cell analysis, KPIs of one cell are compared with the corresponding KPIs of the other cells. In this work, we argue in favor of the inter-cell approach and apply a degradation detection method that is able to detect a sleeping cell that could be difficult to observe using traditional intra-cell methods. We demonstrate its use for detecting emulated degradations among performance data recorded from a live LTE network. The method can be integrated in current systems because it can operate using existing KPIs without any major modification to the network infrastructure

    Participatory sensing as an enabler for self-organisation in future cellular networks

    Get PDF
    In this short review paper we summarise the emerging challenges in the field of participatory sensing for the self-organisation of the next generation of wireless cellular networks. We identify the potential of participatory sensing in enabling the self-organisation, deployment optimisation and radio resource management of wireless cellular networks. We also highlight how this approach can meet the future goals for the next generation of cellular system in terms of infrastructure sharing, management of multiple radio access techniques, flexible usage of spectrum and efficient management of very small data cells

    Automatic Link Balancing Using Fuzzy Logic Control of Handover Parameter

    Get PDF
    Postprint (published version

    Automatic Link Balancing Using Fuzzy Logic Control of Handover Parameter

    Get PDF
    Postprint (published version
    • …
    corecore