284 research outputs found

    A generic classification-based method for segmentation of nuclei in 3D images of early embryos

    Get PDF
    BACKGROUND: Studying how individual cells spatially and temporally organize within the embryo is a fundamental issue in modern developmental biology to better understand the first stages of embryogenesis. In order to perform high-throughput analyses in three-dimensional microscopic images, it is essential to be able to automatically segment, classify and track cell nuclei. Many 3D/4D segmentation and tracking algorithms have been reported in the literature. Most of them are specific to particular models or acquisition systems and often require the fine tuning of parameters. RESULTS: We present a new automatic algorithm to segment and simultaneously classify cell nuclei in 3D/4D images. Segmentation relies on training samples that are interactively provided by the user and on an iterative thresholding process. This algorithm can correctly segment nuclei even when they are touching, and remains effective under temporal and spatial intensity variations. The segmentation is coupled to a classification of nuclei according to cell cycle phases, allowing biologists to quantify the effect of genetic perturbations and drug treatments. Robust 3D geometrical shape descriptors are used as training features for classification. Segmentation and classification results of three complete datasets are presented. In our working dataset of the Caenorhabditis elegans embryo, only 21 nuclei out of 3,585 were not detected, the overall F-score for segmentation reached 0.99, and more than 95% of the nuclei were classified in the correct cell cycle phase. No merging of nuclei was found. CONCLUSION: We developed a novel generic algorithm for segmentation and classification in 3D images. The method, referred to as Adaptive Generic Iterative Thresholding Algorithm (AGITA), is freely available as an ImageJ plug-in

    Single-molecule FISH in Drosophila muscle reveals location dependent mRNA composition of megaRNPs [preprint]

    Get PDF
    Single-molecule fluorescence in-situ hybridization (smFISH) provides direct access to the spatial relationship between nucleic acids and specific subcellular locations. The ability to precisely localize a messenger RNA can reveal key information about its regulation. Although smFISH is well established in cell culture or thin sections, methods for its accurate application to tissues are lacking. The utility of smFISH in thick tissue sections must overcome several challenges, including probe penetration of fixed tissue, accessibility of target mRNAs for probe hybridization, high fluorescent background, spherical aberration along the optical axis, and image segmentation of organelles. Here we describe how we overcame these obstacles to study mRNA localization in Drosophila larval muscle samples that approach 50 Îźm thickness. We use sample-specific optimization of smFISH, particle identification based on maximum likelihood testing, and 3-dimensional multiple-organelle segmentation. The latter allows using independent thresholds for different regions of interest within an image stack. Our approach therefore facilitates accurate measurement of mRNA location in thick tissues

    Computing Interpretable Representations of Cell Morphodynamics

    Get PDF
    Shape changes (morphodynamics) are one of the principal ways cells interact with their environments and perform key intrinsic behaviours like division. These dynamics arise from a myriad of complex signalling pathways that often organise with emergent simplicity to carry out critical functions including predation, collaboration and migration. A powerful method for analysis can therefore be to quantify this emergent structure, bypassing the low-level complexity. Enormous image datasets are now available to mine. However, it can be difficult to uncover interpretable representations of the global organisation of these heterogeneous dynamic processes. Here, such representations were developed for interpreting morphodynamics in two key areas: mode of action (MoA) comparison for drug discovery (developed using the economically devastating Asian soybean rust crop pathogen) and 3D migration of immune system T cells through extracellular matrices (ECMs). For MoA comparison, population development over a 2D space of shapes (morphospace) was described using two models with condition-dependent parameters: a top-down model of diffusive development over Waddington-type landscapes, and a bottom-up model of tip growth. A variety of landscapes were discovered, describing phenotype transitions during growth, and possible perturbations in the tip growth machinery that cause this variation were identified. For interpreting T cell migration, a new 3D shape descriptor that incorporates key polarisation information was developed, revealing low-dimensionality of shape, and the distinct morphodynamics of run-and-stop modes that emerge at minute timescales were mapped. Periodically oscillating morphodynamics that include retrograde deformation flows were found to underlie active translocation (run mode). Overall, it was found that highly interpretable representations could be uncovered while still leveraging the enormous discovery power of deep learning algorithms. The results show that whole-cell morphodynamics can be a convenient and powerful place to search for structure, with potentially life-saving applications in medicine and biocide discovery as well as immunotherapeutics.Open Acces

    Building connectomes using diffusion MRI: why, how and but

    Get PDF
    Why has diffusion MRI become a principal modality for mapping connectomes in vivo? How do different image acquisition parameters, fiber tracking algorithms and other methodological choices affect connectome estimation? What are the main factors that dictate the success and failure of connectome reconstruction? These are some of the key questions that we aim to address in this review. We provide an overview of the key methods that can be used to estimate the nodes and edges of macroscale connectomes, and we discuss open problems and inherent limitations. We argue that diffusion MRI-based connectome mapping methods are still in their infancy and caution against blind application of deep white matter tractography due to the challenges inherent to connectome reconstruction. We review a number of studies that provide evidence of useful microstructural and network properties that can be extracted in various independent and biologically-relevant contexts. Finally, we highlight some of the key deficiencies of current macroscale connectome mapping methodologies and motivate future developments

    Scalable Tools for Information Extraction and Causal Modeling of Neural Data

    Get PDF
    Systems neuroscience has entered in the past 20 years into an era that one might call "large scale systems neuroscience". From tuning curves and single neuron recordings there has been a conceptual shift towards a more holistic understanding of how the neural circuits work and as a result how their representations produce neural tunings. With the introduction of a plethora of datasets in various scales, modalities, animals, and systems; we as a community have witnessed invaluable insights that can be gained from the collective view of a neural circuit which was not possible with small scale experimentation. The concurrency of the advances in neural recordings such as the production of wide field imaging technologies and neuropixels with the developments in statistical machine learning and specifically deep learning has brought system neuroscience one step closer to data science. With this abundance of data, the need for developing computational models has become crucial. We need to make sense of the data, and thus we need to build models that are constrained up to the acceptable amount of biological detail and probe those models in search of neural mechanisms. This thesis consists of sections covering a wide range of ideas from computer vision, statistics, machine learning, and dynamical systems. But all of these ideas share a common purpose, which is to help automate neuroscientific experimentation process in different levels. In chapters 1, 2, and 3, I develop tools that automate the process of extracting useful information from raw neuroscience data in the model organism C. elegans. The goal of this is to avoid manual labor and pave the way for high throughput data collection aiming at better quantification of variability across the population of worms. Due to its high level of structural and functional stereotypy, and its relative simplicity, the nematode C. elegans has been an attractive model organism for systems and developmental research. With 383 neurons in males and 302 neurons in hermaphrodites, the positions and function of neurons is remarkably conserved across individuals. Furthermore, C. elegans remains the only organism for which a complete cellular, lineage, and anatomical map of the entire nervous system has been described for both sexes. Here, I describe the analysis pipeline that we developed for the recently proposed NeuroPAL technique in C. elegans. Our proposed pipeline consists of atlas building (chapter 1), registration, segmentation, neural tracking (chapter 2), and signal extraction (chapter 3). I emphasize that categorizing the analysis techniques as a pipeline consisting of the above steps is general and can be applied to virtually every single animal model and emerging imaging modality. I use the language of probabilistic generative modeling and graphical models to communicate the ideas in a rigorous form, therefore some familiarity with those concepts could help the reader navigate through the chapters of this thesis more easily. In chapters 4 and 5 I build models that aim to automate hypothesis testing and causal interrogation of neural circuits. The notion of functional connectivity (FC) has been instrumental in our understanding of how information propagates in a neural circuit. However, an important limitation is that current techniques do not dissociate between causal connections and purely functional connections with no mechanistic correspondence. I start chapter 4 by introducing causal inference as a unifying language for the following chapters. In chapter 4 I define the notion of interventional connectivity (IC) as a way to summarize the effect of stimulation in a neural circuit providing a more mechanistic description of the information flow. I then investigate which functional connectivity metrics are best predictive of IC in simulations and real data. Following this framework, I discuss how stimulations and interventions can be used to improve fitting and generalization properties of time series models. Building on the literature of model identification and active causal discovery I develop a switching time series model and a method for finding stimulation patterns that help the model to generalize to the vicinity of the observed neural trajectories. Finally in chapter 5 I develop a new FC metric that separates the transferred information from one variable to the other into unique and synergistic sources. In all projects, I have abstracted out concepts that are specific to the datasets at hand and developed the methods in the most general form. This makes the presented methods applicable to a broad range of datasets, potentially leading to new findings. In addition, all projects are accompanied with extensible and documented code packages, allowing theorists to repurpose the modules for novel applications and experimentalists to run analysis on their datasets efficiently and scalably. In summary my main contribution in this thesis are the following: 1) Building the first atlases of hermaphrodite and male C. elegans and developing a generic statistical framework for constructing atlases for a broad range of datasets. 2) Developing a semi-automated analysis pipeline for neural registration, segmentation, and tracking in C. elegans. 3) Extending the framework of non-negative matrix factorization to datasets with deformable motion and developing algorithms for joint tracking and signal demixing from videos of semi-immobilized C. elegans. 4) Defining the notion of interventional connectivity (IC) as a way to summarize the effect of stimulation in a neural circuit and investigating which functional connectivity metrics are best predictive of IC in simulations and real data. 5) Developing a switching time series model and a method for finding stimulation patterns that help the model to generalize to the vicinity of the observed neural trajectories. 6) Developing a new functional connectivity metric that separates the transferred information from one variable to the other into unique and synergistic sources. 7) Implementing extensible, well documented, open source code packages for each of the above contributions
    • …
    corecore