48 research outputs found

    Long-Term Quantitative Microscopy: From Microbial Population Dynamics to Growth of Plant Roots

    Get PDF
    Quantitative optical measurements at the micron scale have been crucial to the study of multiple biological processes, including bacterial chemotaxis, eukaryotic gene expression and y development. Extending measurements to long time scales allows complete observation of processes that are otherwise studied piecemeal, such as development and evolution. This thesis describes the development of two types of microscope for making long term, quantitative measurements, and the tools for image analysis. The rst device is a digital holographic microscope for measuring microbial population dynamics. It allows three dimensional localization of hundreds of cells within a mm3 sized volume, at micron resolution and an acquisition period of minutes. The technique is simple and inexpensive, which enabled us to construct ten replicate devices for parallel measurements. Each device incorporates precise and programmable control of light and temperature for the microbial ecosystem. Experiments were performed with the green algae Chlamydomonas reinhardtii and the ciliate Tetrahymena reinhardtii, both together and in isolation, and continued for as long as 90 days. The population dynamics exhibited a striking degree of repeatability, despite the presence of added noise in the illumination, spatial gradients of cell density, convection currents and phenotypic changes of both species. The second device is a thin light sheet fluorescence microscope for tracking nuclei in growing roots of the flowering plant Arabidopsis thaliana. The device incorporates a chamber designed to maintain optical quality while providing conditions for root growth. Optical feedback to a translation stage is used to maintain the root tip in the fi eld of view as the root grows by centimeters over several days. Data from a three day experiment is presented to demonstrate the technique. Over 1,000 nuclei were tracked simultaneously, and hundreds of cell divisions were automatically identif ed. The device was also used to image the regeneration of a root tip after surgical excision. The data corroborate earlier investigations at a more detailed level than was previously possible

    Advances in quantitative microscopy

    Get PDF
    Microscopy allows us to peer into the complex deeply shrouded world that the cells of our body grow and thrive in. With the emergence of automated digital microscopes and software for anlysing and processing the large numbers of image that they produce; quantitative microscopy approaches are now allowing us to answer ever larger and more complex biological questions. In this thesis I explore two trends. Firstly, that of using quantitative microscopy for performing unbiased screens, the advances made here include developing strategies to handle imaging data captured from physiological models, and unsupervised analysis screening data to derive unbiased biological insights. Secondly, I develop software for analysing live cell imaging data, that can now be captured at greater rates than ever before and use this to help answer key questions covering the biology of how cells make the decision to arrest or proliferate in response to DNA damage. Together this thesis represents a view of the current state of the art in high-throughput quantitative microscopy and details where the field is heading as machine learning approaches become ever more sophisticated.Open Acces

    Cell states and transcriptional programs of the healthy human heart

    Get PDF
    Das Herz ist das zentrale Kreislauforgan in unserem Körper und jede Abweichung seiner Funktion wirkt sich negativ auf die Homöostase des gesamten Körpers aus. Die Herzfunktion beruht auf der Synergie der Zellen, die das Organ bilden. Die detaillierte zelluläre Zusammensetzung sowie die Funktionalität der einzelnen Zellen müssen noch ermittelt werden, und diese Arbeit ist eine wichtige Ergänzung dieser Bemühungen. Dank der jüngsten Entwicklungen in den Einzelzelltechnologien sind wir nun in der Lage, Transkriptome einzelner Zellen aus komplexem Gewebe in beispiellosem Umfang zu charakterisieren. Im ersten Schritt eines solchen Experiments müssen die Zellen und Zellkerne aus dem Gewebe befreit und vereinzelt werden. Herzgewebe wirft in dieser Hinsicht einzigartige Herausforderungen auf, darunter die Knappheit des gesunden menschlichen Herzgewebes für die Forschung, das Vorhandensein von Kardiomyozyten, die aufgrund ihrer Größe nicht durch Microfluid-basierte Standardinstrumente passen und deren Multinukleation, sowie mögliche Voreingenommenheit verschiedener Methoden zur Gewebedissoziation. Hier präsentiere ich den umfassenden Zellatlas des gesunden erwachsenen menschlichen Herzens. Ich beginne mit der Methodenentwicklung zur Isolierung von einzelnen Zellen und Zellkernen aus Mausherzen. Um den Zellatlas des menschlichen Herzens zu erstellen, analysiere ich einen Datensatz von fast einer halben Million Einzelzellen und Zellkerne aus sechs Herzregionen von vierzehn gesunden Menschen. In diesem Atlas definieren wir 11 Hauptzelltypen und 62 Zellzustände des menschlichen Herzens. Ein tieferer Fokus wird auf das Herzgefäßsystem gelegt und die Zellen der arterio-venösen Achse sowie deren Wechselwirkungen und potenzielle Funktionalität werden definiert. Insgesamt präsentiert diese Dissertation einen komplex Datensatz aus menschlichem Herzgewebe und liefert neue Einblicke in die Biologie des gesunden Herzens mit Implikationen für kardiovaskuläre Erkrankungen.The heart is the central circulatory organ in our bodies and any discrepancies of its function relative to healthy homeostasis negatively impact the whole body. Cardiac function relies on the synergy of all the cells that constitute the organ. The detailed cellular composition as well as the heterogeneity and functionality of the individual cells is yet to be established and this work is a major advance in this effort. Thanks to the recent developments in single cell genomics technologies, we are now able to profile transcriptomes from individual cells of complex tissues at unprecedented scale. In the first step of such an experiment, the single cells and nuclei need to be liberated from the tissue. Heart tissue presents a unique set of challenges in this regard, including the scarcity of healthy human cardiac tissue for research, large cardiomyocytes that do not fit into the standard droplet-based instruments, multinucleation of cardiomyocytes that might skew the proportions of the recovered nuclei as well as potential bias of tissue dissociation methods. Here I present a cell atlas of the free walls, apex and septum of the healthy adult human heart. I start with methods development for the isolation of single cells and single nuclei from mouse heart. Next, I move to the building of the atlas of the human cells and nuclei, where I describe the dataset of close to half a million single cells and nuclei sampled from 14 organ donors, defining 11 major cell types and 62 cell states of the heart. A deeper focus on the cardiac vasculature defined the cells of the arterio-venous axis as well as their interactions and potential functionality. Overall, this thesis presents a joined dataset of single cells and single nuclei from human cardiac tissues and provides new insights into cardiac biology in heath with implications for cardiovascular disease

    Investigating physical factors that regulate morphogenesis and fate of mouse embryonic midline sutures

    Get PDF
    Stem cells are crucial players during development, homeostasis and tissue regeneration and their interactions with the surrounding microenvironment are key to regulate stem cell fate. The skull's stem cell niches reside in the fibrous joints that connect flat bones of the skull. In the embryo, bone and sutures develop in concert to form a complex, multi-facted structure that requires interaction with multiple differentiating cell types to maintain balance between growth and differentiation. Disruption of this balance drives changes in size and shape of skull bones and can severely impact quality of life. Cranial sutures, often seen as simple extracellular matrix-rich structures bridging the rigid plates of the skull, are major actors in craniofacial morphogenesis of as they harmonize bone growth with expansion of the developing brain and participate in providing osteoblasts during repair. The complexity of the extracellular environment and the important role for sutures in skeletal development makes these niches a compelling structure to investigate how interactions with the surrounding microenvironment can modulate stem cells fate. The key role of sutures in development is highlighted by the numerous severe dysmorphisms arising from failure to maintain suture patency. The ability of the suture to respond to brain growth or trauma and the dysmophisms presented by patients with defective sutures is mediated by both biochemical and mechanical cues but the cell biology of these niches remains elusive, especially during their development. In particular, few studies have shed light on the underlying cellular behaviors behind microenvironmental regulation of cranial suture stem cell fate and what role mechanical inputs play in the establishment of this niche. In my thesis, I addressed gaps in our understanding of suture biology by characterizing the suture stem cell niche microenvironment and exploring how cell-ECM interactions serve as regulators of suture stem cell fate. Making use of various microscopy and analytical techniques I first characterized the composition of the microenvironment in a developing suture niche, such as organization of ECM, cytoskeleton and nuclear morphologies. My work builds on an incomplete transcriptional understanding of suture cell development, such that specific genetic markers are rarely useful for identifying distinct suture cell populations during its morphogenesis. By applying shape description tools to parse suture cells and test whether shape correlates to cell identity, we concluded that suture nuclei are distinct and less spherical than those of other cranial tissues. Using 'global' markers such as nuclear stains, I have also identified physical distinctions between suture nuclei and neighboring tissues, indicating that cell shape is an integral part of midline suture identity and can be used to explore coordination of fate choice and morphogenesis in this enigmatic structure. In addition, I present evidence that supports that maturation of extracellular matrix begins during early stages of suture development. In particular, embryonic midline sutures express high levels of fibrillary collagen, which contributes to the formation of a complex extracellular environment that provides the suture with physical properties distinct from those of developing bones. My work shows the presence of cell-ECM and cell-cell adhesions in the developing midline sutures, as well as a complex actin cytoskeleton that is, in part, mediated by physical stresses resultant from underlying brain expansion. Secondly, I aimed to address how perturbations in ECM composition can affect cell specification. To investigate the importance of ECM maturation in regulating suture cell fate I inhibited the function of lysyl oxidase, a collagen crosslinker, during embryonic development. Disruption of collagen crosslinking altered expression of collagen and ECM receptor encoding genes. In addition, this inhibition induced changes in the shape and size of collagen fibers in the embryonic midline suture and decreased tissue bulk stiffness relative to WT. These abnormal properties of the ECM impact tissue delineation in the cranial mesenchyme through nuclear shape analyses. This might be explained by observed changes in the composition of the nuclear envelop of suture cells as we find altered lamin concentration and localization upon lysyl oxidase inhibition. The work developed during myPhD steps away from the traditional genetic approaches used to study the embryonic suture and provides the first in-depth analysis of the physical properties of the developing midline suture at stages preceding known establishment of the niche. The various methods and analyses applied reveal a complex organization of embryonic suture ECM and its tight relationship with shape and fate in this tissue. This work serves as a foundation for future studies that can explore the mechanisms through which ECM regulates fate and development of the suture niche, and potentially skeletal development more generally

    Understanding the brain through its spatial structure

    Full text link
    The spatial location of cells in neural tissue can be easily extracted from many imaging modalities, but the information contained in spatial relationships between cells is seldom utilized. This is because of a lack of recognition of the importance of spatial relationships to some aspects of brain function, and the reflection in spatial statistics of other types of information. The mathematical tools necessary to describe spatial relationships are also unknown to many neuroscientists, and biologists in general. We analyze two cases, and show that spatial relationships can be used to understand the role of a particular type of cell, the astrocyte, in Alzheimer's disease, and that the geometry of axons in the brain's white matter sheds light on the process of establishing connectivity between areas of the brain. Astrocytes provide nutrients for neuronal metabolism, and regulate the chemical environment of the brain, activities that require manipulation of spatial distributions (of neurotransmitters, for example). We first show, through the use of a correlation function, that inter-astrocyte forces determine the size of independent regulatory domains in the cortex. By examining the spatial distribution of astrocytes in a mouse model of Alzheimer's Disease, we determine that astrocytes are not actively transported to fight the disease, as was previously thought. The paths axons take through the white matter determine which parts of the brain are connected, and how quickly signals are transmitted. The rules that determine these paths (i.e. shortest distance) are currently unknown. By measurement of axon orientation distributions using three-point correlation functions and the statistics of axon turning and branching, we reveal that axons are restricted to growth in three directions, like a taxicab traversing city blocks, albeit in three-dimensions. We show how geometric restrictions at the small scale are related to large-scale trajectories. Finally we discuss the implications of this finding for experimental and theoretical connectomics

    Psr1p interacts with SUN/sad1p and EB1/mal3p to establish the bipolar spindle

    Get PDF
    Regular Abstracts - Sunday Poster Presentations: no. 382During mitosis, interpolar microtubules from two spindle pole bodies (SPBs) interdigitate to create an antiparallel microtubule array for accommodating numerous regulatory proteins. Among these proteins, the kinesin-5 cut7p/Eg5 is the key player responsible for sliding apart antiparallel microtubules and thus helps in establishing the bipolar spindle. At the onset of mitosis, two SPBs are adjacent to one another with most microtubules running nearly parallel toward the nuclear envelope, creating an unfavorable microtubule configuration for the kinesin-5 kinesins. Therefore, how the cell organizes the antiparallel microtubule array in the first place at mitotic onset remains enigmatic. Here, we show that a novel protein psrp1p localizes to the SPB and plays a key role in organizing the antiparallel microtubule array. The absence of psr1+ leads to a transient monopolar spindle and massive chromosome loss. Further functional characterization demonstrates that psr1p is recruited to the SPB through interaction with the conserved SUN protein sad1p and that psr1p physically interacts with the conserved microtubule plus tip protein mal3p/EB1. These results suggest a model that psr1p serves as a linking protein between sad1p/SUN and mal3p/EB1 to allow microtubule plus ends to be coupled to the SPBs for organization of an antiparallel microtubule array. Thus, we conclude that psr1p is involved in organizing the antiparallel microtubule array in the first place at mitosis onset by interaction with SUN/sad1p and EB1/mal3p, thereby establishing the bipolar spindle.postprin

    Removal of antagonistic spindle forces can rescue metaphase spindle length and reduce chromosome segregation defects

    Get PDF
    Regular Abstracts - Tuesday Poster Presentations: no. 1925Metaphase describes a phase of mitosis where chromosomes are attached and oriented on the bipolar spindle for subsequent segregation at anaphase. In diverse cell types, the metaphase spindle is maintained at a relatively constant length. Metaphase spindle length is proposed to be regulated by a balance of pushing and pulling forces generated by distinct sets of spindle microtubules and their interactions with motors and microtubule-associated proteins (MAPs). Spindle length appears important for chromosome segregation fidelity, as cells with shorter or longer than normal metaphase spindles, generated through deletion or inhibition of individual mitotic motors or MAPs, showed chromosome segregation defects. To test the force balance model of spindle length control and its effect on chromosome segregation, we applied fast microfluidic temperature-control with live-cell imaging to monitor the effect of switching off different combinations of antagonistic forces in the fission yeast metaphase spindle. We show that spindle midzone proteins kinesin-5 cut7p and microtubule bundler ase1p contribute to outward pushing forces, and spindle kinetochore proteins kinesin-8 klp5/6p and dam1p contribute to inward pulling forces. Removing these proteins individually led to aberrant metaphase spindle length and chromosome segregation defects. Removing these proteins in antagonistic combination rescued the defective spindle length and, in some combinations, also partially rescued chromosome segregation defects. Our results stress the importance of proper chromosome-to-microtubule attachment over spindle length regulation for proper chromosome segregation.postprin

    Dissecting tumor cell heterogeneity in 3D cell culture systems by combining imaging and next generation sequencing technologies

    Get PDF
    Three-dimensional (3D) in vitro cell culture systems have advanced the modeling of cellular processes in health and disease by reflecting physiological characteristics and architectural features of in vivo tissues. As a result, representative patient-derived 3D culture systems are emerging as advanced pre-clinical tumor models to support individualized therapy decisions. Beside the additional progress that has been achieved in molecular and pathological analyses towards personalized treatments, a remaining problem in both primary lesions and in vitro cultures is our limited understanding of functional tumor cell heterogeneity. This phenomenon is increasingly recognized as key driver of tumor progression and treatment resistance. Recent technological advances in next generation sequencing (NGS) have enabled unbiased identification of gene expression in low-input samples and single cells (scRNA-seq), thereby providing the basis to reveal cellular subtypes and drivers of cell state transitions. However, these methods generally require dissociation of tissues into single cell suspensions, which consequently leads to the loss of multicellular context. Thus, a direct or indirect combination of gene expression profiling with in situ microscopy is necessary for single cell analyses to precisely understand the association between complex cellular phenotypes and their underlying genetic programs. In this thesis, I will present two complementing strategies based on combinations of NGS and microscopy to dissect tumor cell heterogeneity in 3D culture systems. First, I will describe the development and application of the new method ‘pheno-seq’ for integrated high-throughput imaging and transcriptomic profiling of clonal tumor spheroids derived from models of breast and colorectal cancer (CRC). By this approach, we revealed characteristic gene expression that is associated with heterogeneous invasive and proliferative behavior, identified transcriptional regulators that are missed by scRNA-seq, linked visual phenotypes and associated transcriptional signatures to inhibitor response and inferred single-cell regulatory states by deconvolution. Second, by applying scRNA-seq to 12 patient-derived CRC spheroid cultures, we identified shared expression programs that relate to intestinal lineages and revealed metabolic signatures that are linked to cancer cell differentiation. In addition, we validated and complemented sequencing results by quantitative microscopy using live-dyes and multiplexed RNA fluorescence in situ hybridization, thereby revealing metabolic compartmentalization and potential cell-cell interactions. Taken together, we believe that our approaches provide a framework for translational research to dissect heterogeneous transcriptional programs in 3D cell culture systems which will pave the way for a deeper understanding of functional tumor cell heterogeneity
    corecore