4,962 research outputs found

    Whole-brain vasculature reconstruction at the single capillary level

    Get PDF
    The distinct organization of the brain’s vascular network ensures that it is adequately supplied with oxygen and nutrients. However, despite this fundamental role, a detailed reconstruction of the brain-wide vasculature at the capillary level remains elusive, due to insufficient image quality using the best available techniques. Here, we demonstrate a novel approach that improves vascular demarcation by combining CLARITY with a vascular staining approach that can fill the entire blood vessel lumen and imaging with light-sheet fluorescence microscopy. This method significantly improves image contrast, particularly in depth, thereby allowing reliable application of automatic segmentation algorithms, which play an increasingly important role in high-throughput imaging of the terabyte-sized datasets now routinely produced. Furthermore, our novel method is compatible with endogenous fluorescence, thus allowing simultaneous investigations of vasculature and genetically targeted neurons. We believe our new method will be valuable for future brain-wide investigations of the capillary network

    Classification and Lateralization of Temporal Lobe Epilepsies with and without Hippocampal Atrophy Based on Whole-Brain Automatic MRI Segmentation

    Get PDF
    Brain images contain information suitable for automatically sorting subjects into categories such as healthy controls and patients. We sought to identify morphometric criteria for distinguishing controls (n = 28) from patients with unilateral temporal lobe epilepsy (TLE), 60 with and 20 without hippocampal atrophy (TLE-HA and TLE-N, respectively), and for determining the presumed side of seizure onset. The framework employs multi-atlas segmentation to estimate the volumes of 83 brain structures. A kernel-based separability criterion was then used to identify structures whose volumes discriminate between the groups. Next, we applied support vector machines (SVM) to the selected set for classification on the basis of volumes. We also computed pairwise similarities between all subjects and used spectral analysis to convert these into per-subject features. SVM was again applied to these feature data. After training on a subgroup, all TLE-HA patients were correctly distinguished from controls, achieving an accuracy of 96 ± 2% in both classification schemes. For TLE-N patients, the accuracy was 86 ± 2% based on structural volumes and 91 ± 3% using spectral analysis. Structures discriminating between patients and controls were mainly localized ipsilaterally to the presumed seizure focus. For the TLE-HA group, they were mainly in the temporal lobe; for the TLE-N group they included orbitofrontal regions, as well as the ipsilateral substantia nigra. Correct lateralization of the presumed seizure onset zone was achieved using hippocampi and parahippocampal gyri in all TLE-HA patients using either classification scheme; in the TLE-N patients, lateralization was accurate based on structural volumes in 86 ± 4%, and in 94 ± 4% with the spectral analysis approach. Unilateral TLE has imaging features that can be identified automatically, even when they are invisible to human experts. Such morphometric image features may serve as classification and lateralization criteria. The technique also detects unsuspected distinguishing features like the substantia nigra, warranting further study

    Arbeiten zur Optischen Kohärenztomographie, Magnetresonanzspektroskopie und Ultrahochfeld-Magnetresonanztomographie

    Get PDF
    Abstrakt (Deutsch) Hintergrund: Die Multiple Sklerose ist eine der häufigsten neurologischen Erkrankungen, die zu Behinderung bereits im jungen Erwachsenenalter führen kann. Hierzu tragen im Krankheitsprozess sowohl neuroinflammatorische wie auch neurodegenerative Komponenten bei. Moderne bildgebende Verfahren wie die Ultrahochfeld-Magnetresonanztomographie (UHF-MRT), die Optische Kohärenztomographie (OCT) und die Magnetresonanzspektroskopie (MRS) können benutzt werden, um diese neurodegenerativen Prozesse näher zu charakterisieren und im zeitlichen Verlauf zu beobachten. Zielsetzung: Ziel ist es, die genannten Verfahren zur Charakterisierung von Kohorten von MS-Patienten einzusetzen und die Verfahren zueinander, sowie mit klinischen Parametern in Beziehung zu setzen oder diagnostisch zu nutzen. Methodik: Patienten mit Multipler Sklerose oder Neuromyelitis optica wurden klinisch-neurologisch, mit Optischer Kohärenztomographie, Sehprüfungen, Untersuchungen der visuell evozierten Potentiale (VEP), (Ultrahochfeld-) Magnetresonanztomographie und Magnetresonanzspektroskopie untersucht. Ergebnisse: Die in der Studie eingesetzten bildgebenden Verfahren konnten dazu beitragen, Neuroinflammation und Neurodegeneration bei an Multiple Sklerose erkrankten Patienten näher zu charakterisieren. So steht eine mittels OCT messbare Verdünnung retinaler Nervenfaserschichten (RNFL) in Zusammenhang mit dem per MRT gemessenen Hirnparenchymvolumen und Neurodegeneration anzeigenden Parametern, die mithilfe der Magnetresonanzspektroskopie untersucht wurden. Mithilfe der UHF-MRT konnte ein Zusammenhang zwischen dem Volumen und der entzündlichen Läsionslast der Sehstrahlung, der RNFL-Dicke, VEP-Latenzen und Einschränkungen des Sehvermögens dargestellt werden. Außerdem ließen sich mit der UHF-MRT auch neurogenerative Aspekte im Sinne von bleibenden Parenchymdefekten innerhalb entzündlicher Läsionen und einer Verschmächtigung der Sehstrahlung nachweisen und die Detektion insbesondere kortikaler MS-Läsionen wurde im Vergleich zur konventionellen MRT verbessert. Zusammenfassung: OCT, MRS und UHF-MRT sind Verfahren, die eine genauere Beschreibung von Neuroinflammation und Neurodegeneration bei MS-Patienten ermöglichen, wie hier vor allem für die Sehbahn gezeigt wurde. Sie sind nichtinvasiv und lassen sich zur näheren Charakterisierung des aktuellen Zustandes und zur Beobachtung des Krankheitsverlaufs von MS-Patienten benutzen.Abstract (English) Background: Multiple sclerosis (MS) is the most common disabling neurologic disease, that causes impairment in younger people. Both neuroinflammatory and neurodegenerative processes contribute to the pathogenesis of multiple sclerosis. Innovative imaging methods, such as ultra-high field magnetic resonance tomography (UHF-MRI), optic coherence tomography (OCT) and magnetic resonance spectroscopy (MRS) can be used for characterizing these neurodegenerative processes in detail and over time course. Objective: To use the imaging methods mentioned above to further characterize cohorts of MS patients and to correlate the parameters with themselves as well as with clinical parameters and to evaluate their prognostic and diagnostic relevance. Methods: Patients with multiple sclerosis were examined clinically, by OCT, visual acuity testing, examination of visually evoked potentials, ultra high field magnetic resonance tomography and magnetic resonance spectroscopy. Results: The imaging methods used in these studies contributed to further characterize neuroinflammation und neurodegeneration in multiple sclerosis patients. A thinning of the retinal nerve fiber layer (RNFL) is correlated with brain parenchyma volume measured by MRI, and markers indicating ongoing neurodegenerative processes as detected by MRS. Using UHF-MRI, a correlation between optic radiation properties (such as inflammatory lesion load and its volume) and RNFL thickness, VEP latencies and visual impairment could be demonstrated. Furthermore, UHF-MRI demonstrated neurodegenerative aspects such as parenchymal defects within inflammatory lesions, an optic radiation thinning and allowed a more precise detection of MS lesions than conventional MRI, in particular cortical grey matter lesions. Summary: OCT, MRS and UHF-MRI are feasible methods to provide a more detailed description of neuroinflammation and neurodegeneration in MS patients, as demonstrated in these studies particularly for the visual pathway. They are non-invasive and can be utilized for clinical to study the disease course and also in differential diagnostic procedures

    Magnetic Resonance Spectroscopy discriminates the response to microglial stimulation of wild type and Alzheimer's disease models.

    Get PDF
    Microglia activation has emerged as a potential key factor in the pathogenesis of Alzheimers disease. Metabolite levels assessed by magnetic resonance spectroscopy (MRS) are used as markers of neuroinflammation in neurodegenerative diseases, but how they relate to microglial activation in health and chronic disease is incompletely understood. Using MRS, we monitored the brain metabolic response to lipopolysaccharides (LPS)-induced microglia activation in vivo in a transgenic mouse model of Alzheimers disease (APP/PS1) and healthy controls (wild-type (WT) littermates) over 4 hours. We assessed reactive gliosis by immunohistochemistry and correlated metabolic and histological measures. In WT mice, LPS induced a microglial phenotype consistent with activation, associated with a sustained increase in macromolecule and lipid levels (ML9). This effect was not seen in APP/PS1 mice, where LPS did not lead to a microglial response measured by histology, but induced a late increase in the putative inflammation marker myoinositol (mI) and metabolic changes in total creatine and taurine previously reported to be associated with amyloid load. We argue that ML9 and mI distinguish the response of WT and APP/PS1 mice to immune mediators. Lipid and macromolecule levels may represent a biomarker of activation of healthy microglia, while mI may not be a glial marker

    Simultaneous effects on parvalbumin-positive interneuron and dopaminergic system development in a transgenic rat model for sporadic schizophrenia

    Get PDF
    To date, unequivocal neuroanatomical features have been demonstrated neither for sporadic nor for familial schizophrenia. Here, we investigated the neuroanatomical changes in a transgenic rat model for a subset of sporadic chronic mental illness (CMI), which modestly overexpresses human full-length, non-mutant Disrupted-in-Schizophrenia 1 (DISC1), and for which aberrant dopamine homeostasis consistent with some schizophrenia phenotypes has previously been reported. Neuroanatomical analysis revealed a reduced density of dopaminergic neurons in the substantia nigra and reduced dopaminergic fibres in the striatum. Parvalbumin-positive interneuron occurrence in the somatosensory cortex was shifted from layers II/III to V/VI, and the number of calbindin-positive interneurons was slightly decreased. Reduced corpus callosum thickness confirmed trend-level observations from in vivo MRI and voxel-wise tensor based morphometry. These neuroanatomical changes help explain functional phenotypes of this animal model, some of which resemble changes observed in human schizophrenia post mortem brain tissues. Our findings also demonstrate how a single molecular factor, DISC1 overexpression or misassembly, can account for a variety of seemingly unrelated morphological phenotypes and thus provides a possible unifying explanation for similar findings observed in sporadic schizophrenia patients. Our anatomical investigation of a defined model for sporadic mental illness enables a clearer definition of neuroanatomical changes associated with subsets of human sporadic schizophrenia

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Grey-matter texture abnormalities and reduced hippocampal volume are distinguishing features of schizophrenia

    Get PDF
    Neurodevelopmental processes are widely believed to underlie schizophrenia. Analysis of brain texture from conventional magnetic resonance imaging (MRI) can detect disturbance in brain cytoarchitecture. We tested the hypothesis that patients with schizophrenia manifest quantitative differences in brain texture that, alongside discrete volumetric changes, may serve as an endophenotypic biomarker. Texture analysis (TA) of grey matter distribution and voxel-based morphometry (VBM) of regional brain volumes were applied to MRI scans of 27 patients with schizophrenia and 24 controls. Texture parameters (uniformity and entropy) were also used as covariates in VBM analyses to test for correspondence with regional brain volume. Linear discriminant analysis tested if texture and volumetric data predicted diagnostic group membership (schizophrenia or control). We found that uniformity and entropy of grey matter differed significantly between individuals with schizophrenia and controls at the fine spatial scale (filter width below 2 mm). Within the schizophrenia group, these texture parameters correlated with volumes of the left hippocampus, right amygdala and cerebellum. The best predictor of diagnostic group membership was the combination of fine texture heterogeneity and left hippocampal size. This study highlights the presence of distributed grey-matter abnormalities in schizophrenia, and their relation to focal structural abnormality of the hippocampus. The conjunction of these features has potential as a neuroimaging endophenotype of schizophrenia
    corecore