4,794 research outputs found

    Compact Structural Test Generation for Analog Macros

    Get PDF
    A structural, fault-model based methodology for the generation of compact high-quality test sets for analog macros is presented. Results are shown for an IV-converter macro design. Parameters of so-called test configurations are optimized for detection of faults in a fault-list and an optimal selection algorithm results in determining the best test set. The distribution of the results along the parameter-axes of the test configurations is investigated to identify a collapsed high-quality test se

    Self-Testing Analog Spiking Neuron Circuit

    Get PDF
    International audienceHardware-implemented neural networks are foreseen to play an increasing role in numerous applications. In this paper, we address the problem of post-manufacturing test and self-test of hardware-implemented neural networks. In particular, we propose a self-testable version of a spiking neuron circuit. The self-test wrapper is a compact circuit composed of a low-precision ramp generator and a small digital block. The self-test principle is demonstrated on a spiking neuron circuit design in 0.35Āµm CMOS technology

    Constraint-driven RF test stimulus generation and built-in test

    Get PDF
    With the explosive growth in wireless applications, the last decade witnessed an ever-increasing test challenge for radio frequency (RF) circuits. While the design community has pushed the envelope far into the future, by expanding CMOS process to be used with high-frequency wireless devices, test methodology has not advanced at the same pace. Consequently, testing such devices has become a major bottleneck in high-volume production, further driven by the growing need for tighter quality control. RF devices undergo testing during the prototype phase and during high-volume manufacturing (HVM). The benchtop test equipment used throughout prototyping is very precise yet specialized for a subset of functionalities. HVM calls for a different kind of test paradigm that emphasizes throughput and sufficiency, during which the projected performance parameters are measured one by one for each device by automated test equipment (ATE) and compared against defined limits called specifications. The set of tests required for each product differs greatly in terms of the equipment required and the time taken to test individual devices. Together with signal integrity, precision, and repeatability concerns, the initial cost of RF ATE is prohibitively high. As more functionality and protocols are integrated into a single RF device, the required number of specifications to be tested also increases, adding to the overall cost of testing, both in terms of the initial and recurring operating costs. In addition to the cost problem, RF testing proposes another challenge when these components are integrated into package-level system solutions. In systems-on-packages (SOP), the test problems resulting from signal integrity, input/output bandwidth (IO), and limited controllability and observability have initiated a paradigm shift in high-speed analog testing, favoring alternative approaches such as built-in tests (BIT) where the test functionality is brought into the package. This scheme can make use of a low-cost external tester connected through a low-bandwidth link in order to perform demanding response evaluations, as well as make use of the analog-to-digital converters and the digital signal processors available in the package to facilitate testing. Although research on analog built-in test has demonstrated hardware solutions for single specifications, the paradigm shift calls for a rather general approach in which a single methodology can be applied across different devices, and multiple specifications can be verified through a single test hardware unit, minimizing the area overhead. Specification-based alternate test methodology provides a suitable and flexible platform for handling the challenges addressed above. In this thesis, a framework that integrates ATE and system constraints into test stimulus generation and test response extraction is presented for the efficient production testing of high-performance RF devices using specification-based alternate tests. The main components of the presented framework are as follows: Constraint-driven RF alternate test stimulus generation: An automated test stimulus generation algorithm for RF devices that are evaluated by a specification-based alternate test solution is developed. The high-level models of the test signal path define constraints in the search space of the optimized test stimulus. These models are generated in enough detail such that they inherently define limitations of the low-cost ATE and the I/O restrictions of the device under test (DUT), yet they are simple enough that the non-linear optimization problem can be solved empirically in a reasonable amount of time. Feature extractors for BIT: A methodology for the built-in testing of RF devices integrated into SOPs is developed using additional hardware components. These hardware components correlate the high-bandwidth test response to low bandwidth signatures while extracting the test-critical features of the DUT. Supervised learning is used to map these extracted features, which otherwise are too complicated to decipher by plain mathematical analysis, into the specifications under test. Defect-based alternate testing of RF circuits: A methodology for the efficient testing of RF devices with low-cost defect-based alternate tests is developed. The signature of the DUT is probabilistically compared with a class of defect-free device signatures to explore possible corners under acceptable levels of process parameter variations. Such a defect filter applies discrimination rules generated by a supervised classifier and eliminates the need for a library of possible catastrophic defects.Ph.D.Committee Chair: Chatterjee, Abhijit; Committee Member: Durgin, Greg; Committee Member: Keezer, David; Committee Member: Milor, Linda; Committee Member: Sitaraman, Sures

    Fault simulation for structural testing of analogue integrated circuits

    Get PDF
    In this thesis the ANTICS analogue fault simulation software is described which provides a statistical approach to fault simulation for accurate analogue IC test evaluation. The traditional figure of fault coverage is replaced by the average probability of fault detection. This is later refined by considering the probability of fault occurrence to generate a more realistic, weighted test metric. Two techniques to reduce the fault simulation time are described, both of which show large reductions in simulation time with little loss of accuracy. The final section of the thesis presents an accurate comparison of three test techniques and an evaluation of dynamic supply current monitoring. An increase in fault detection for dynamic supply current monitoring is obtained by removing the DC component of the supply current prior to measurement

    The T2K ND280 Off-Axis Pi-Zero Detector

    Full text link
    The Pi-Zero detector (P{\O}D) is one of the subdetectors that makes up the off-axis near detector for the Tokai-to-Kamioka (T2K) long baseline neutrino experiment. The primary goal for the P{\O}D is to measure the relevant cross sections for neutrino interactions that generate pi-zero's, especially the cross section for neutral current pi-zero interactions, which are one of the dominant sources of background to the electron neutrino appearance signal in T2K. The P{\O}D is composed of layers of plastic scintillator alternating with water bags and brass sheets or lead sheets and is one of the first detectors to use Multi-Pixel Photon Counters (MPPCs) on a large scale.Comment: 17 pages, submitted to NIM

    Chronic obstructive pulmonary disease: Quantification of bronchodilator effects by using hyperpolarized Ā³He MR imaging

    Get PDF
    PURPOSE: To evaluate short-acting bronchodilator effects in chronic obstructive pulmonary disease (COPD) by using hyperpolarized helium 3 (Ā³He) magnetic resonance (MR) imaging, spirometry, and plethysmography. MATERIALS AND METHODS: Fourteen ex-smokers with COPD provided written informed consent to a local ethics board-approved and Health Insurance and Portability Accountability Act-compliant protocol and underwent hyperpolarized Ā³He and hydrogen 1 MR imaging, spirometry, and plethysmography before and a mean of 25 minutes Ā± 2 (standard deviation) after administration of 400 Ī¼g salbutamol. Distribution of Ā³He gas was evaluated by using semiautomated segmentation of Ā³He voxel intensities, where cluster 1 represented regions of signal void or ventilation defect volume (VDV), and clusters 2-5 (C2-C5) represented gradations of signal intensity from hypointensity (C2) to hyperintensity (C5). Ā³He ventilation defect percentage (VDP) was calculated as VDV normalized to the thoracic cavity volume. Comparisons of pre- and post-salbutamol means were performed by using a two-way mixed-design repeated measures analysis of variance, and comparisons of the magnitude of the treatment effect between pulmonary function and Ā³He MR imaging measurements were performed by using effect size (ES) calculations. The relationships between pulmonary function and Ā³He MR imaging findings were determined by using Spearman correlation coefficients. RESULTS: After salbutamol administration, there were significant changes in forced expiratory volume in 1 second (FEVā‚) (P = .001), total lung capacity (P = .04), and functional residual capacity (P = .03), as well as VDP (P \u3c .0001) and Ā³He gas distribution (C2, P = .01; C3, P = .03; C4, P \u3c .0001; and C5, P = .02). Treatment ES was greater for Ā³He VDP than for FEV(1) (0.50 vs 0.22). There was a significant correlation between baseline VDP and post-salbutamol FEVā‚ change (r = -0.77, P = .001). Although five patients were classified as bronchodilator responders and nine patients were classified as bronchodilator nonresponders according to American Thoracic Society and European Respiratory Society criteria, there was no significant difference in the magnitude of the Ā³He MR imaging changes after salbutamol administration between responder groups. CONCLUSION: Ā³He MR imaging depicted significant improvements in the distribution of Ā³He gas after bronchodilator therapy in ex-smokers with COPD with and those without clinically important changes in FEVā‚

    Outlier detection approach for PCB testing based on Principal Component Analysis, An

    Get PDF
    2011 Spring.Includes bibliographical references.Capacitive Lead Frame Testing, a widely used approach for printed circuit board testing, is very effective for open solder detection. The approach, however, is affected by mechanical variations during testing and by tolerances of electrical parameters of components, making it difficult to use threshold based techniques for defect detection. A novel approach is presented in this thesis for identifying boardruns that are likely to be outliers. Based on Principal Components Analysis (PCA), this approach treats the set of capacitance measurements of individual connectors or sockets in a holistic manner to overcome the measurement and component parameter variations inherent in test data. Effectiveness of the method is evaluated using measurements on different types of boards. Based on multiple analyses of different measurement datasets, the most suitable statistics for outlier detection and relative parameter values are also identified. Enhancements to the PCA-based technique using the concept of test-pin windows are presented to increase the resolution of the analysis. When applied to one test window at a time, PCA is able to detect the physical position of potential defects. Combining the basic and enhanced techniques, the effectiveness of outlier detection is improved. The PCA based approach is extended to detect and compensate for systematic variation of measurement data caused by tilt or shift of the sense plate. This scheme promises to enhance the accuracy of outlier detection when measurements are from different fixtures. Compensation approaches are introduced to correct the 'abnormal' measurements due to sense-plate variations to a 'normal' and consistent baseline. The effectiveness of this approach in the presence of the two common forms of mechanical variations is illustrated. Potential to use PCA based analysis to estimate the relative amount of tilt and shift in sense plate is demonstrated
    • ā€¦
    corecore