2,402 research outputs found

    Deep learning methods for improving diabetes management tools

    Get PDF
    Diabetes is a chronic disease that is characterised by a lack of regulation of blood glucose concentration in the body, and thus elevated blood glucose levels. Consequently, affected individuals can experience extreme variations in their blood glucose levels with exogenous insulin treatment. This has associated debilitating short-term and long-term complications that affect quality of life and can result in death in the worst instance. The development of technologies such as glucose meters and, more recently, continuous glucose monitors have offered the opportunity to develop systems towards improving clinical outcomes for individuals with diabetes through better glucose control. Data-driven methods can enable the development of the next generation of diabetes management tools focused on i) informativeness ii) safety and iii) easing the burden of management. This thesis aims to propose deep learning methods for improving the functionality of the variety of diabetes technology tools available for self-management. In the pursuit of the aforementioned goals, a number of deep learning methods are developed and geared towards improving the functionality of the existing diabetes technology tools, generally classified as i) self-monitoring of blood glucose ii) decision support systems and iii) artificial pancreas. These frameworks are primarily based on the prediction of glucose concentration levels. The first deep learning framework we propose is geared towards improving the artificial pancreas and decision support systems that rely on continuous glucose monitors. We first propose a convolutional recurrent neural network (CRNN) in order to forecast the glucose concentration levels over both short-term and long-term horizons. The predictive accuracy of this model outperforms those of traditional data-driven approaches. The feasibility of this proposed approach for ambulatory use is then demonstrated with the implementation of a decision support system on a smartphone application. We further extend CRNNs to the multitask setting to explore the effectiveness of leveraging population data for developing personalised models with limited individual data. We show that this enables earlier deployment of applications without significantly compromising performance and safety. The next challenge focuses on easing the burden of management by proposing a deep learning framework for automatic meal detection and estimation. The deep learning framework presented employs multitask learning and quantile regression to safely detect and estimate the size of unannounced meals with high precision. We also demonstrate that this facilitates automated insulin delivery for the artificial pancreas system, improving glycaemic control without significantly increasing the risk or incidence of hypoglycaemia. Finally, the focus shifts to improving self-monitoring of blood glucose (SMBG) with glucose meters. We propose an uncertainty-aware deep learning model based on a joint Gaussian Process and deep learning framework to provide end users with more dynamic and continuous information similar to continuous glucose sensors. Consequently, we show significant improvement in hyperglycaemia detection compared to the standard SMBG. We hope that through these methods, we can achieve a more equitable improvement in usability and clinical outcomes for individuals with diabetes.Open Acces

    The Safety Challenges of Deep Learning in Real-World Type 1 Diabetes Management

    Full text link
    Blood glucose simulation allows the effectiveness of type 1 diabetes (T1D) management strategies to be evaluated without patient harm. Deep learning algorithms provide a promising avenue for extending simulator capabilities; however, these algorithms are limited in that they do not necessarily learn physiologically correct glucose dynamics and can learn incorrect and potentially dangerous relationships from confounders in training data. This is likely to be more important in real-world scenarios, as data is not collected under strict research protocol. This work explores the implications of using deep learning algorithms trained on real-world data to model glucose dynamics. Free-living data was processed from the OpenAPS Data Commons and supplemented with patient-reported tags of challenging diabetes events, constituting one of the most detailed real-world T1D datasets. This dataset was used to train and evaluate state-of-the-art glucose simulators, comparing their prediction error across safety critical scenarios and assessing the physiological appropriateness of the learned dynamics using Shapley Additive Explanations (SHAP). While deep learning prediction accuracy surpassed the widely-used mathematical simulator approach, the model deteriorated in safety critical scenarios and struggled to leverage self-reported meal and exercise information. SHAP value analysis also indicated the model had fundamentally confused the roles of insulin and carbohydrates, which is one of the most basic T1D management principles. This work highlights the importance of considering physiological appropriateness when using deep learning to model real-world systems in T1D and healthcare more broadly, and provides recommendations for building models that are robust to real-world data constraints.Comment: 15 pages, 3 figure

    Design and Validation of an Open-Source Closed-Loop Testbed for Artificial Pancreas Systems

    Full text link
    The development of a fully autonomous artificial pancreas system (APS) to independently regulate the glucose levels of a patient with Type 1 diabetes has been a long-standing goal of diabetes research. A significant barrier to progress is the difficulty of testing new control algorithms and safety features, since clinical trials are time- and resource-intensive. To facilitate ease of validation, we propose an open-source APS testbed by integrating APS controllers with two state-of-the-art glucose simulators and a novel fault injection engine. The testbed is able to reproduce the blood glucose trajectories of real patients from a clinical trial conducted over six months. We evaluate the performance of two closed-loop control algorithms (OpenAPS and Basal Bolus) using the testbed and find that more advanced control algorithms are able to keep blood glucose in a safe region 93.49% and 79.46% of the time on average, compared with 66.18% of the time for the clinical trial. The fault injection engine simulates the real recalls and adverse events reported to the U.S. Food and Drug Administration (FDA) and demonstrates the resilience of the controller in hazardous conditions. We used the testbed to generate 2.5 years of synthetic data representing 20 different patient profiles with realistic adverse event scenarios, which would have been expensive and risky to collect in a clinical trial. The proposed testbed is a valid tool that can be used by the research community to demonstrate the effectiveness of different control algorithms and safety features for APS.Comment: 12 pages, 12 figures, to appear in the IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), 202

    Consensus Recommendations for the Use of Automated Insulin Delivery (AID) Technologies in Clinical Practice

    Get PDF
    International audienceThe significant and growing global prevalence of diabetes continues to challenge people with diabetes (PwD), healthcare providers and payers. While maintaining near-normal glucose levels has been shown to prevent or delay the progression of the long-term complications of diabetes, a significant proportion of PwD are not attaining their glycemic goals. During the past six years, we have seen tremendous advances in automated insulin delivery (AID) technologies. Numerous randomized controlled trials and real-world studies have shown that the use of AID systems is safe and effective in helping PwD achieve their long-term glycemic goals while reducing hypoglycemia risk. Thus, AID systems have recently become an integral part of diabetes management. However, recommendations for using AID systems in clinical settings have been lacking. Such guided recommendations are critical for AID success and acceptance. All clinicians working with PwD need to become familiar with the available systems in order to eliminate disparities in diabetes quality of care. This report provides much-needed guidance for clinicians who are interested in utilizing AIDs and presents a comprehensive listing of the evidence payers should consider when determining eligibility criteria for AID insurance coverage

    Contributions to modelling and control for improved hypoglycaemia and variability mitigation by dual-hormone artificial pancreas systems

    Full text link
    [ES] Las personas con diabetes tipo 1 carecen de la capacidad de secretar insulina y, por lo tanto, necesitan regular su glucosa en sangre con la administración de insulina exógena. El páncreas artificial se presenta como la solución tecnológica ideal para alcanzar los objetivos terapéuticos de la normoglucemia, liberando al paciente de la carga actual de autocontrol y manejo. Sin embargo, el riesgo de hipoglucemia y la variabilidad glucémica siguen siendo factores limitantes en los algoritmos de control actuales integrados en el páncreas artificial. El propósito de la presente tesis es profundizar en el conocimiento de la hipoglucemia y avanzar los algoritmos de control del páncreas artificial para minimizar la incidencia de hipoglucemia y reducir la variabilidad glucémica. Después de proporcionar una visión general del estado del arte del control de la glucosa y el páncreas artificial, esta tesis aborda temas relacionados con el modelado y el control, con las siguientes contribuciones: Se presenta una extensión del modelo de Bergman Minimal que tiene en cuenta la respuesta contrarreguladora a la hipoglucemia. Este modelo explica la relación entre los diversos cambios fisiológicos producidos durante la hipoglucemia, con la adrenalina y los ácidos grasos libres como actores principales. Como resultado, se obtiene una mejor comprensión de la hipoglucemia, lo que permite explicar una auto-potenciación paradójica de la hipoglucemia como se modela a través de enfoques funcionales en el ampliamente utilizado simulador de diabetes tipo 1 UVA-Padova, que se utilizará en esta tesis para la validación in silico de los controladores desarrollados. Se realiza una evaluación de las métricas de variabilidad de la glucosa y los índices de calidad de control. La evaluación de la variabilidad glucémica en el desempeño de los controladores es necesaria; pero todavía no hay un conjunto de métricas de variabilidad glucémica que sea considerado como el "gold estándar". Por tanto, se lleva a cabo un análisis de las métricas de variabilidad disponibles en la literatura para definir un conjunto de indicadores recomendables. Debido a las limitaciones de los sistemas de páncreas artificiales unihormonales para mitigar la hipoglucemia en escenarios difíciles como el ejercicio, esta tesis se centra en el desarrollo de nuevos algoritmos de control bihormonales, con infusión simultanea de insulina y glucagón. Se propone un controlador coordinado bihormonal con estructuras de control paralelas como un algoritmo de control factible para la mitigación de la hipoglucemia y la reducción de la variabilidad glucémica, demostrando un rendimiento superior al de las estructuras de control utilizadas actualmente con lazos de control independientes de insulina y glucagón. Los controladores están diseñados y evaluados in silico en escenarios desafiantes y su rendimiento se evalúa principalmente con el conjunto de métricas definidas previamente como las recomendables.[CA] Les persones amb diabetis tipus 1 no tenen la capacitat de secretar insulina secreta i per tant, necessiten regular la seva glucosa en sang amb l'administració d'insulina exògena. El Pàncrees Artificial es presenta com la solució tecnològica ideal per assolir els objectius terapèutics de la normoglucèmia, alliberant al pacient de la càrrega actual d'autocontrol. No obstant, el risc d'hipoglucèmia i l'alta variabilitat glucèmica continuen sent un factor limitant en els algoritmes de control actuals integrats en el Pàncrees Artificials. El propòsit de la present tesi és aprofundir en el coneixement de la hipoglucèmia i millorar els algoritmes de control per corregir amb antelació la dosi excessiva d'insulina, minimitzant la incidència d'hipoglucèmia i reduint la variabilitat glucèmica. Després de donar una visió general de l'estat de l'art del control de la glucosa i el pàncrees artificial, aquesta tesi aborda aspectes de modelització i control, amb les següents contribucions: Es presenta una extensió del model Minimal de Bergman amb la contrarregulació. Aquest model explica la relació entre els diversos canvis siològics produïts durant la hipoglucèmia. Així, permet comprendre millor la hipoglucèmia i comparar els resultats amb els proporcionats per l'enfocament funcional del simulador de diabetis tipus 1 més utilitzat a la comunitat científica. Es realitza una avaluació de les mètriques de variabilitat glucèmica i dels índexs de qualitat de control. Es necessària l'avaluació de la variabilitat glucèmica en el rendiment dels controladors; però encara no hi ha un conjunt de mètriques considerades com les "gold standard". Per tant, es realitza una anàlisi de les mètriques de variabilitat disponibles a la literatura per definir un conjunt d'indicadors recomanables. Es proposa un controlador bi-hormonal coordinat amb estructures de control paral.leles com un algoritme de control viable per a la mitigació d'hipoglucèmia i la reducció de la variabilitat glucèmica. Els controladors estan dissenyats i avaluats in-silico en escenaris desafiadors i el seu rendiment es valora principalment amb el conjunt de mètriques definides prèviament com les mètriques recomanables.[EN] People with Type 1 Diabetes lack the ability to secrete insulin and therefore need to regulate their blood glucose with exogenous insulin delivery. The Artificial Pancreas is presented as the ideal technological solution to reach the therapeutic goals of normoglycaemia, freeing the patient from the current burden of self-control and management. Nevertheless, the risk of hypoglycaemia and the high glycaemic variability are still a limiting factors in the current control algorithms integrated in the Artificial Pancreas. The purpose of the present thesis is to delve into knowledge of hypoglycaemia and to advance in the artificial pancreas control algorithms in order to minimise hypoglycaemia incidence and reduce glycaemic variability. After providing an overview of the state of the art in the eld of glucose control and articial pancreas, this thesis addresses issues on modelling and control, with the following contributions: An extension of the Bergman Minimal model accounting for counterregulatory response to hypoglycaemia is presented. This model explains the relationship between the several physiological changes produced during hypoglycaemia, with adrenaline and free fatty acids as main players. As a result, a better understanding of hypoglycaemia is gained, allowing to explain a paradoxical auto-potentiation of hypoglycaemia as modeled through functional approaches in the widespread used UVA-Padova Type 1 Diabetes simulator, which will be used in this thesis for in silico validation of the developed controllers. An assessment of glucose variability metrics and control quality indices is carried out. The evaluation of the glycaemic variability on the controllers performance is necessary; but there is not a gold standard variability metrics yet. Therefore, an analysis of the variability metrics available in literature is conducted in order to define a recommendable set of indicators. Due to the limitations of single-hormone artificial pancreas systems in mitigating hypoglycaemia in challenging scenarios such as exercise, this thesis focuses on the developement of new dual-hormone control algorithms, with concomitant infusion of insulin and glucagon. A coordinated dual-hormone controller with parallel control structures is proposed as a feasible control algorithm for hypoglycaemia mitigation and glycaemic variability reduction, demonstrating superior performance as currently used control structures with independent insulin and glucagon control loops. The controllers are designed and evaluated in-silico under challenging scenarios and their performance are assessed mainly with the set of metrics defined previously as the recommendable ones.Moscardó García, V. (2019). Contributions to modelling and control for improved hypoglycaemia and variability mitigation by dual-hormone artificial pancreas systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/120456TESI

    Intelligent decision support systems for optimised diabetes

    Get PDF
    Computers now pervade the field of medicine extensively; one recent innovation is the development of intelligent decision support systems for inexperienced or non-specialist pbysicians, or in some cases for use by patients. In this thesis a critical review of computer systems in medicine, with special reference to decision support systems, is followed by a detailed description of the development and evaluation of two new, interacting, intelligent decision support systems in the domain of diabetes. Since the discovery of insulin in 1922, insulin replacement therapy for the treatment of diabetes mellitus bas evolved into a complex process; there are many different formulations of insulin and much more information about the factors which affect patient management (e.g. diet, exercise and progression of complications) are recognised. Physicians have to decide on the most appropriate anti-diabetic therapy to prescribe to their patients. Insulin-treated patients also have to monitor their blood glucose and decide how much insulin to inject and when to inject it. In order to help patients determine the most appropriate dose of insulin to take, a simple-to-use, hand-held decision support system has been developed. Algorithms for insulin adjustment have been elicited and combined with general rules of therapy to offer advice for every dose. The utility of the system has been evaluated by clinical trials and simulation studies. In order to aid physician management, a clinic-based decision support system has also been developed. The system provides wide-ranging advice on all aspects of diabetes care and advises an appropriate therapy regimen according to individual patient circumstances. Decisions advised by the pbysician-related system have been evaluated by a panel of expert physicians and the system has undergone informal primary evaluation within the clinic setting. An interesting aspect of both systems is their ability to provide advice even in cases where information is lacking or uncertain

    Impact of Sensing and Actuation Characteristics on Artificial Pancreas Design

    Get PDF
    Type 1 diabetes mellitus (T1DM) is a chronic disease characterized by the body’s inability to produce insulin, leading to chronically high blood glucose (BG) concentrations. T1DM is treated by frequent self-administration of insulin based on BG measurements; however, there is a fine line between too little and too much insulin, and an overdose can lead to a dangerous drop in BG. The artificial pancreas (AP), consisting of a glucose sensor, an insulin pump, and a feedback control algorithm, will replace self-treatment by automatically calculating and delivering insulin dosages based on continuous glucose measurements. Many iterations of the AP utilize commercially available subcutaneous (SC) insulin pumps and glucose sensors, but these devices introduce physiological limitations that make control difficult. In this work, we present a clinical evaluation of an AP that uses SC devices, as well as an investigation of the intraperitoneal (IP) space as an alternative site for insulin delivery and glucose sensing to improve AP performance. Our results show that glucose sensors placed in the IP space have a lower time constant than SC sensors, allowing the controller to respond more quickly to BG disturbances. Similarly, insulin delivered through the IP space has faster pharmacokinetic and pharmacodynamic characteristics than SC insulin. Based on models of the sensing and actuation dynamics, a proportional-integral-derivative control algorithm with anti-reset windup protection was designed for the IP-IP route and evaluated on 10 simulated T1DM subjects. Using the IP-IP route led to a more robust controller that provided excellent control during the simulation studies. Our results support the development of a fully implantable AP that will operate within the IP space to safely and effectively control BG levels

    STOCHASTIC SEASONAL MODELS FOR GLUCOSE PREDICTION IN TYPE 1 DIABETES

    Full text link
    [ES] La diabetes es un importante problema de salud mundial, siendo una de las enfermedades no transmisibles más graves después de las enfermedades cardiovasculares, el cáncer y las enfermedades respiratorias crónicas. La prevalencia de la diabetes ha aumentado constantemente en las últimas décadas, especialmente en países de ingresos bajos y medios. Se estima que 425 millones de personas en todo el mundo tenían diabetes en 2017, y para 2045 este número puede aumentar a 629 millones. Alrededor del 10% de las personas con diabetes padecen diabetes tipo 1, caracterizada por una destrucción autoinmune de las células beta en el páncreas, responsables de la secreción de la hormona insulina. Sin insulina, la glucosa plasmática aumenta a niveles nocivos, provocando complicaciones vasculares a largo plazo. Hasta que se encuentre una cura, el manejo de la diabetes depende de los avances tecnológicos para terapias de reemplazo de insulina. Con la llegada de los monitores continuos de glucosa, la tecnología ha evolucionado hacia sistemas automatizados. Acuñados como "páncreas artificial", los dispositivos de control de glucosa en lazo cerrado suponen hoy en día un cambio de juego en el manejo de la diabetes. La investigación en las últimas décadas ha sido intensa, dando lugar al primer sistema comercial a fines de 2017, y muchos más están siendo desarrollados por las principales industrias de dispositivos médicos. Sin embargo, como dispositivo de primera generación, muchos problemas aún permanecen abiertos y nuevos avances tecnológicos conducirán a mejoras del sistema para obtener mejores resultados de control glucémico y reducir la carga del paciente, mejorando significativamente la calidad de vida de las personas con diabetes tipo 1. En el centro de cualquier sistema de páncreas artificial se encuentra la predicción de glucosa, tema abordado en esta tesis. La capacidad de predecir la glucosa a lo largo de un horizonte de predicción dado, y la estimación de las tendencias futuras de glucosa, es la característica más importante de cualquier sistema de páncreas artificial, para poder tomar medidas preventivas que eviten por completo el riesgo para el paciente. La predicción de glucosa puede aparecer como parte del algoritmo de control en sí, como en sistemas basados en técnicas de control predictivo basado en modelo (MPC), o como parte de un sistema de supervisión para evitar episodios de hipoglucemia. Sin embargo, predecir la glucosa es un problema muy desafiante debido a la gran variabilidad inter e intra-sujeto que sufren los pacientes, cuyas fuentes solo se entienden parcialmente. Esto limita las prestaciones predictivas de los modelos, imponiendo horizontes de predicción relativamente cortos, independientemente de la técnica de modelado utilizada (modelos fisiológicos, basados en datos o híbridos). La hipótesis de partida de esta tesis es que la complejidad de la dinámica de la glucosa requiere la capacidad de caracterizar grupos de comportamientos en los datos históricos del paciente que llevan naturalmente al concepto de modelado local. Además, la similitud de las respuestas en un grupo puede aprovecharse aún más para introducir el concepto clásico de estacionalidad en la predicción de glucosa. Como resultado, los modelos locales estacionales están en el centro de esta tesis. Se utilizan varias bases de datos clínicas que incluyen comidas mixtas y ejercicio para demostrar la viabilidad y superioridad de las prestaciones de este enfoque.[CA] La diabetisés un important problema de salut mundial, sent una de les malalties no transmissibles més greus després de les malalties cardiovasculars, el càncer i les malalties respiratòries cròniques. La prevalença de la diabetis ha augmentat constantment en les últimes dècades, especialment en països d'ingressos baixos i mitjans. S'estima que 425 milions de persones a tot el món tenien diabetis en 2017, i per 2045 aquest nombre pot augmentar a 629 milions. Al voltant del 10% de les persones amb diabetis pateixen diabetis tipus 1, caracteritzada per una destrucció autoimmune de les cèl·lules beta en el pàncrees, responsables de la secreció de l'hormona insulina. Sense insulina, la glucosa plasmàtica augmenta a nivells nocius, provocant complicacions vasculars a llarg termini. Fins que es trobi una cura, el maneig de la diabetis depén dels avenços tecnològics per a teràpies de reemplaçament d'insulina. Amb l'arribada dels monitors continus de glucosa, la tecnologia ha evolucionat cap a sistemes automatitzats. Encunyats com "pàncrees artificial", els dispositius de control de glucosa en llaç tancat suposen avui dia un canvi de joc en el maneig de la diabetis. La investigació en les últimes dècades ha estat intensa, donant lloc al primer sistema comercial a finals de 2017, i molts més estan sent desenvolupats per les principals indústries de dispositius mèdics. No obstant això, com a dispositiu de primera generació, molts problemes encara romanen oberts i nous avenços tecnològics conduiran a millores del sistema per obtenir millors resultats de control glucèmic i reduir la càrrega del pacient, millorant significativament la qualitat de vida de les persones amb diabetis tipus 1. Al centre de qualsevol sistema de pàncrees artificial es troba la predicció de glucosa, tema abordat en aquesta tesi. La capacitat de predir la glucosa al llarg d'un horitzó de predicció donat, i l'estimació de les tendències futures de glucosa, és la característica més important de qualsevol sistema de pàncrees artificial, per poder prendre mesures preventives que evitin completament el risc per el pacient. La predicció de glucosa pot aparèixer com a part de l'algoritme de control en si, com en sistemes basats en técniques de control predictiu basat en model (MPC), o com a part d'un sistema de supervisió per evitar episodis d'hipoglucèmia. No obstant això, predir la glucosa és un problema molt desafiant degut a la gran variabilitat inter i intra-subjecte que pateixen els pacients, les fonts només s'entenen parcialment. Això limita les prestacions predictives dels models, imposant horitzons de predicció relativament curts, independentment de la tècnica de modelatge utilitzada (models fisiològics, basats en dades o híbrids). La hipòtesi de partida d'aquesta tesi és que la complexitat de la dinàmica de la glucosa requereix la capacitat de caracteritzar grups de comportaments en les dades històriques del pacient que porten naturalment al concepte de modelatge local. A més, la similitud de les respostes en un grup pot aprofitar-se encara més per introduir el concepte clàssic d'estacionalitat en la predicció de glucosa. Com a resultat, els models locals estacionals estan al centre d'aquesta tesi. S'utilitzen diverses bases de dades clíniques que inclouen menjars mixtes i exercici per demostrar la viabilitat i superioritat de les prestacions d'aquest enfocament.[EN] Diabetes is a significant global health problem, one of the most serious noncommunicable diseases after cardiovascular diseases, cancer and chronic respiratory diseases. Diabetes prevalence has been steadily increasing over the past decades, especially in low- and middle-income countries. It is estimated that 425 million people worldwide had diabetes in 2017, and by 2045 this number may rise to 629 million. About 10% of people with diabetes suffer from type 1 diabetes, characterized by autoimmune destruction of the beta-cells in the pancreas, responsible for the secretion of the hormone insulin. Without insulin, plasma glucose rises to deleterious levels, provoking long-term vascular complications. Until a cure is found, the management of diabetes relies on technological developments for insulin replacement therapies. With the advent of continuous glucose monitors, technology has been evolving towards automated systems. Coined as "artificial pancreas", closed-loop glucose control devices are nowadays a game-changer in diabetes management. Research in the last decades has been intense, yielding a first commercial system in late 2017 and many more are in the pipeline of the main medical devices industry. However, as a first-generation device, many issues still remain open and new technological advancements will lead to system improvements for better glycemic control outputs and reduced patient's burden, improving significantly the quality of life of people with type 1 diabetes. At the core of any artificial pancreas system is glucose prediction, the topic addressed in this thesis. The ability to predict glucose along a given prediction horizon, and estimation of future glucose trends, is the most important feature of any artificial pancreas system, in order to be able to take preventive actions to entirely avoid risk to the patient. Glucose prediction can appear as part of the control algorithm itself, such as in systems based on model predictive control (MPC) techniques, or as part of a monitoring system to avoid hypoglycemic episodes. However, predicting glucose is a very challenging problem due to the large inter- and intra-subject variability that patients suffer, whose sources are only partially understood. These limits models forecasting performance, imposing relatively short prediction horizons, despite the modeling technique used (physiological, data-driven or hybrid approaches). The starting hypothesis of this thesis is that the complexity of glucose dynamics requires the ability to characterize clusters of behaviors in the patient's historical data naturally yielding to the concept of local modeling. Besides, the similarity of responses in a cluster can be further exploited to introduce the classical concept of seasonality into glucose prediction. As a result, seasonal local models are at the core of this thesis. Several clinical databases including mixed meals and exercise are used to demonstrate the feasibility and superiority of the performance of this approach.This work has been supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under the FPI grant BES-2014-069253 and projects DPI2013-46982-C2-1-R and DPI2016-78831-C2-1-R. Moreover, with relation to this grant, a short stay was done at the end of 2017 at the Illinois Institute of Technology, Chicago, United States of America, under the supervision of Prof. Ali Cinar, for four months from 01/09/2017 to 29/12/2017.Montaser Roushdi Ali, E. (2020). STOCHASTIC SEASONAL MODELS FOR GLUCOSE PREDICTION IN TYPE 1 DIABETES [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/136574TESI
    corecore