12,656 research outputs found

    NASAs Human Landing System: The Strategy for the 2024 Mission and Future Sustainability

    Get PDF
    In response to the 2018 White House Space Policy Directive- sustainable lunar exploration, and to the Vice Presidents March 2019 direction to do so by 2024, NASA is working to establish humanity's presence on and around the Moon by: 1) sending payloads to its surface, 2) assembling the Gateway outpost in orbit and 3) demonstrating the first human lunar landings since 1972. NASAs Artemis program is implementing a multi-faceted and coordinated agency-wide approach with a focus on the lunar South Pole. The Artemis missions will demonstrate new technologies, capabilities and business approaches needed for future exploration, including Mars. Assessing options to accelerate development of required systems, NASA is utilizing public-private engagements through the Human Exploration and Operations (HEO) Mission Directorates NextSTEP Broad Agency Announcements. The design, development and demonstration of the Human Landing System (HLS) is expected to be led by commercial partners. Utilizing efforts across mission directorates, the Artemis effort will benefit from programs from the Science Mission Directorate (SMD) and Space Technology Mission Directorate (STMD). SMDs Commercial Lunar Payload Services (CLPS) initiative will procure commercial robotic lunar delivery services and the development of science instruments and technology demonstration payloads. The Space Technology Mission Directorate (STMD) portfolio of technology advancements relative to HLS include lunar lander components and technologies for pointing, navigation and tracking, fuel storage and transfer, autonomy and mobility, communications, propulsion and power. In addition to describing the objectives and requirements of the 2024 Artemis mission, this paper will present NASAs approach to accessing the lunar surface with an affordable human-rated landing system, current status and the role o a sustainable lunar presence

    An Ontological Approach to Representing the Product Life Cycle

    Get PDF
    The ability to access and share data is key to optimizing and streamlining any industrial production process. Unfortunately, the manufacturing industry is stymied by a lack of interoperability among the systems by which data are produced and managed, and this is true both within and across organizations. In this paper, we describe our work to address this problem through the creation of a suite of modular ontologies representing the product life cycle and its successive phases, from design to end of life. We call this suite the Product Life Cycle (PLC) Ontologies. The suite extends proximately from The Common Core Ontologies (CCO) used widely in defense and intelligence circles, and ultimately from the Basic Formal Ontology (BFO), which serves as top level ontology for the CCO and for some 300 further ontologies. The PLC Ontologies were developed together, but they have been factored to cover particular domains such as design, manufacturing processes, and tools. We argue that these ontologies, when used together with standard public domain alignment and browsing tools created within the context of the Semantic Web, may offer a low-cost approach to solving increasingly costly problems of data management in the manufacturing industry

    NASA Technology Area 07: Human Exploration Destination Systems Roadmap

    Get PDF
    This paper gives an overview of the National Aeronautics and Space Administration (NASA) Office of Chief Technologist (OCT) led Space Technology Roadmap definition efforts. This paper will given an executive summary of the technology area 07 (TA07) Human Exploration Destination Systems (HEDS). These are draft roadmaps being reviewed and updated by the National Research Council. Deep-space human exploration missions will require many game changing technologies to enable safe missions, become more independent, and enable intelligent autonomous operations and take advantage of the local resources to become self-sufficient thereby meeting the goal of sustained human presence in space. Taking advantage of in-situ resources enhances and enables revolutionary robotic and human missions beyond the traditional mission architectures and launch vehicle capabilities. Mobility systems will include in-space flying, surface roving, and Extra-vehicular Activity/Extravehicular Robotics (EVA/EVR) mobility. These push missions will take advantage of sustainability and supportability technologies that will allow mission independence to conduct human mission operations either on or near the Earth, in deep space, in the vicinity of Mars, or on the Martian surface while opening up commercialization opportunities in low Earth orbit (LEO) for research, industrial development, academia, and entertainment space industries. The Human Exploration Destination Systems (HEDS) Technology Area (TA) 7 Team has been chartered by the Office of the Chief Technologist (OCT) to strategically roadmap technology investments that will enable sustained human exploration and support NASA s missions and goals for at least the next 25 years. HEDS technologies will enable a sustained human presence for exploring destinations such as remote sites on Earth and beyond including, but not limited to, LaGrange points, low Earth orbit (LEO), high Earth orbit (HEO), geosynchronous orbit (GEO), the Moon, near-Earth objects (NEOs), which > 95% are asteroidal bodies, Phobos, Deimos, Mars, and beyond. The HEDS technology roadmap will strategically guide NASA and other U.S. Government agency technology investments that will result in capabilities enabling human exploration missions to diverse destinations generating high returns on investments
    • …
    corecore