3,674 research outputs found

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images

    Full text link
    Automated classification of histopathological whole-slide images (WSI) of breast tissue requires analysis at very high resolutions with a large contextual area. In this paper, we present context-aware stacked convolutional neural networks (CNN) for classification of breast WSIs into normal/benign, ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC). We first train a CNN using high pixel resolution patches to capture cellular level information. The feature responses generated by this model are then fed as input to a second CNN, stacked on top of the first. Training of this stacked architecture with large input patches enables learning of fine-grained (cellular) details and global interdependence of tissue structures. Our system is trained and evaluated on a dataset containing 221 WSIs of H&E stained breast tissue specimens. The system achieves an AUC of 0.962 for the binary classification of non-malignant and malignant slides and obtains a three class accuracy of 81.3% for classification of WSIs into normal/benign, DCIS, and IDC, demonstrating its potentials for routine diagnostics

    Deep-Learning for Classification of Colorectal Polyps on Whole-Slide Images

    Full text link
    Histopathological characterization of colorectal polyps is an important principle for determining the risk of colorectal cancer and future rates of surveillance for patients. This characterization is time-intensive, requires years of specialized training, and suffers from significant inter-observer and intra-observer variability. In this work, we built an automatic image-understanding method that can accurately classify different types of colorectal polyps in whole-slide histology images to help pathologists with histopathological characterization and diagnosis of colorectal polyps. The proposed image-understanding method is based on deep-learning techniques, which rely on numerous levels of abstraction for data representation and have shown state-of-the-art results for various image analysis tasks. Our image-understanding method covers all five polyp types (hyperplastic polyp, sessile serrated polyp, traditional serrated adenoma, tubular adenoma, and tubulovillous/villous adenoma) that are included in the US multi-society task force guidelines for colorectal cancer risk assessment and surveillance, and encompasses the most common occurrences of colorectal polyps. Our evaluation on 239 independent test samples shows our proposed method can identify the types of colorectal polyps in whole-slide images with a high efficacy (accuracy: 93.0%, precision: 89.7%, recall: 88.3%, F1 score: 88.8%). The presented method in this paper can reduce the cognitive burden on pathologists and improve their accuracy and efficiency in histopathological characterization of colorectal polyps, and in subsequent risk assessment and follow-up recommendations

    Pan-cancer classifications of tumor histological images using deep learning

    Get PDF
    Histopathological images are essential for the diagnosis of cancer type and selection of optimal treatment. However, the current clinical process of manual inspection of images is time consuming and prone to intra- and inter-observer variability. Here we show that key aspects of cancer image analysis can be performed by deep convolutional neural networks (CNNs) across a wide spectrum of cancer types. In particular, we implement CNN architectures based on Google Inception v3 transfer learning to analyze 27815 H&E slides from 23 cohorts in The Cancer Genome Atlas in studies of tumor/normal status, cancer subtype, and mutation status. For 19 solid cancer types we are able to classify tumor/normal status of whole slide images with extremely high AUCs (0.995±0.008). We are also able to classify cancer subtypes within 10 tissue types with AUC values well above random expectations (micro-average 0.87±0.1). We then perform a cross-classification analysis of tumor/normal status across tumor types. We find that classifiers trained on one type are often effective in distinguishing tumor from normal in other cancer types, with the relationships among classifiers matching known cancer tissue relationships. For the more challenging problem of mutational status, we are able to classify TP53 mutations in three cancer types with AUCs from 0.65-0.80 using a fully-trained CNN, and with similar cross-classification accuracy across tissues. These studies demonstrate the power of CNNs for not only classifying histopathological images in diverse cancer types, but also for revealing shared biology between tumors. We have made software available at: https://github.com/javadnoorb/HistCNNFirst author draf

    Improve the performance of transfer learning without fine-tuning using dissimilarity-based multi-view learning for breast cancer histology images

    Get PDF
    Breast cancer is one of the most common types of cancer and leading cancer-related death causes for women. In the context of ICIAR 2018 Grand Challenge on Breast Cancer Histology Images, we compare one handcrafted feature extractor and five transfer learning feature extractors based on deep learning. We find out that the deep learning networks pretrained on ImageNet have better performance than the popular handcrafted features used for breast cancer histology images. The best feature extractor achieves an average accuracy of 79.30%. To improve the classification performance, a random forest dissimilarity based integration method is used to combine different feature groups together. When the five deep learning feature groups are combined, the average accuracy is improved to 82.90% (best accuracy 85.00%). When handcrafted features are combined with the five deep learning feature groups, the average accuracy is improved to 87.10% (best accuracy 93.00%)

    A transfer learning‐based system for grading breast invasive ductal carcinoma

    Get PDF
    © 2022 The Authors. IET Image Processing published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. This is an open access article under the terms of the Creative Commons Attribution License, https://creativecommons.org/licenses/by/4.0/Breast carcinoma is a sort of malignancy that begins in the breast. Breast malignancy cells generally structure a tumour that can routinely be seen on an x‐ray or felt like a lump. Despite advances in screening, treatment, and observation that have improved patient endurance rates, breast carcinoma is the most regularly analyzed malignant growth and the subsequent driving reason for malignancy mortality among ladies. Invasive ductal carcinoma is the most boundless breast malignant growth with about 80% of all analyzed cases. It has been found from numerous types of research that artificial intelligence has tremendous capabilities, which is why it is used in various sectors, especially in the healthcare domain. In the initial phase of the medical field, mammography is used for diagnosis, and finding cancer in the case of a dense breast is challenging. The evolution of deep learning and applying the same in the findings are helpful for earlier tracking and medication. The authors have tried to utilize the deep learning concepts for grading breast invasive ductal carcinoma using Transfer Learning in the present work. The authors have used five transfer learning approaches here, namely VGG16, VGG19, InceptionReNetV2, DenseNet121, and DenseNet201 with 50 epochs in the Google Colab platform which has a single 12GB NVIDIA Tesla K80 graphical processing unit (GPU) support that can be used up to 12 h continuously. The dataset used for this work can be openly accessed from http://databiox.com. The experimental results that the authors have received regarding the algorithm's accuracy are as follows: VGG16 with 92.5%, VGG19 with 89.77%, InceptionReNetV2 with 84.46%, DenseNet121 with 92.64%, DenseNet201 with 85.22%. From the experimental results, it is clear that the DenseNet121 gives the maximum accuracy in terms of cancer grading, whereas the InceptionReNetV2 has minimal accuracy.Peer reviewe
    corecore