589 research outputs found

    Computer-aided detection and diagnosis of breast cancer in 2D and 3D medical imaging through multifractal analysis

    Get PDF
    This Thesis describes the research work performed in the scope of a doctoral research program and presents its conclusions and contributions. The research activities were carried on in the industry with Siemens S.A. Healthcare Sector, in integration with a research team. Siemens S.A. Healthcare Sector is one of the world biggest suppliers of products, services and complete solutions in the medical sector. The company offers a wide selection of diagnostic and therapeutic equipment and information systems. Siemens products for medical imaging and in vivo diagnostics include: ultrasound, computer tomography, mammography, digital breast tomosynthesis, magnetic resonance, equipment to angiography and coronary angiography, nuclear imaging, and many others. Siemens has a vast experience in Healthcare and at the beginning of this project it was strategically interested in solutions to improve the detection of Breast Cancer, to increase its competitiveness in the sector. The company owns several patents related with self-similarity analysis, which formed the background of this Thesis. Furthermore, Siemens intended to explore commercially the computer- aided automatic detection and diagnosis eld for portfolio integration. Therefore, with the high knowledge acquired by University of Beira Interior in this area together with this Thesis, will allow Siemens to apply the most recent scienti c progress in the detection of the breast cancer, and it is foreseeable that together we can develop a new technology with high potential. The project resulted in the submission of two invention disclosures for evaluation in Siemens A.G., two articles published in peer-reviewed journals indexed in ISI Science Citation Index, two other articles submitted in peer-reviewed journals, and several international conference papers. This work on computer-aided-diagnosis in breast led to innovative software and novel processes of research and development, for which the project received the Siemens Innovation Award in 2012. It was very rewarding to carry on such technological and innovative project in a socially sensitive area as Breast Cancer.No cancro da mama a deteção precoce e o diagnóstico correto são de extrema importância na prescrição terapêutica e caz e e ciente, que potencie o aumento da taxa de sobrevivência à doença. A teoria multifractal foi inicialmente introduzida no contexto da análise de sinal e a sua utilidade foi demonstrada na descrição de comportamentos siológicos de bio-sinais e até na deteção e predição de patologias. Nesta Tese, três métodos multifractais foram estendidos para imagens bi-dimensionais (2D) e comparados na deteção de microcalci cações em mamogramas. Um destes métodos foi também adaptado para a classi cação de massas da mama, em cortes transversais 2D obtidos por ressonância magnética (RM) de mama, em grupos de massas provavelmente benignas e com suspeição de malignidade. Um novo método de análise multifractal usando a lacunaridade tri-dimensional (3D) foi proposto para classi cação de massas da mama em imagens volumétricas 3D de RM de mama. A análise multifractal revelou diferenças na complexidade subjacente às localizações das microcalci cações em relação aos tecidos normais, permitindo uma boa exatidão da sua deteção em mamogramas. Adicionalmente, foram extraídas por análise multifractal características dos tecidos que permitiram identi car os casos tipicamente recomendados para biópsia em imagens 2D de RM de mama. A análise multifractal 3D foi e caz na classi cação de lesões mamárias benignas e malignas em imagens 3D de RM de mama. Este método foi mais exato para esta classi cação do que o método 2D ou o método padrão de análise de contraste cinético tumoral. Em conclusão, a análise multifractal fornece informação útil para deteção auxiliada por computador em mamogra a e diagnóstico auxiliado por computador em imagens 2D e 3D de RM de mama, tendo o potencial de complementar a interpretação dos radiologistas

    Breast Cancer Detection on Automated 3D Ultrasound with Co-localized 3D X-ray.

    Full text link
    X-ray mammography is the gold standard for detecting breast cancer while B-mode ultrasound is employed as its diagnostic complement. This dissertation aimed at acquiring a high quality, high-resolution 3D automated ultrasound image of the entire breast at current diagnostic frequencies, in the same geometry as mammography and its 3D equivalent, digital breast tomosynthesis, and to extend and help test its utility with co-localization. The first objective of this work was to engineer solutions to overcome some challenges inherent in acquiring complete automated ultrasound of the breast and minimizing patient motion during scans. Automated whole-breast ultrasound that can be registered to X-Ray imaging eliminates the uncertainty associated with hand-held ultrasound. More than 170 subjects were imaged using superior coupling agents tested during the course of this study. At least one radiologist rated the usefulness of X-Ray and ultrasound co-localization as high in the majority of our study cases. The second objective was to accurately register tomosynthesis image volumes of the breast, making the detection of tissue growth and deformation over time a realistic possibility. It was found for the first time to our knowledge that whole breast digital tomosynthesis image volumes can be spatially registered with an error tolerance of 2 mm, which is 10% of the average size of cancers in a screening population. The third and final objective involved the registration and fusion of 3D ultrasound image volumes acquired from opposite sides of the breast in the mammographic geometry, a novel technique that improves the volumetric resolution of high frequency ultrasound but poses unique problems. To improve the accuracy and speed of registration, direction-dependent artifacts should be eliminated. Further, it is necessary to identify other regions, usually at greater depths, that contain little or misleading information. Machine learning, principal component analysis and speckle reducing anisotropic diffusion were tested in this context. We showed that machine learning classifiers can identify regions of corrupted data accurately on a custom breast-mimicking phantom, and also that they can identify specific artifacts in-vivo. Initial registrations of phantom image sets with many regions of artifacts removed provided robust results as compared to the original datasets.Ph.D.Biomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/78947/1/sumedha_1.pd

    Computer-aided image quality assessment in automated 3D breast ultrasound images

    Get PDF
    Automated 3D breast ultrasound (ABUS) is a valuable, non-ionising adjunct to X-ray mammography for breast cancer screening and diagnosis for women with dense breasts. High image quality is an important prerequisite for diagnosis and has to be guaranteed at the time of acquisition. The high throughput of images in a screening scenario demands for automated solutions. In this work, an automated image quality assessment system rating ABUS scans at the time of acquisition was designed and implemented. Quality assessment of present diagnostic ultrasound images has rarely been performed demanding thorough analysis of potential image quality aspects in ABUS. Therefore, a reader study was initiated, making two clinicians rate the quality of clinical ABUS images. The frequency of specific quality aspects was evaluated revealing that incorrect positioning and insufficiently applied contact fluid caused the most relevant image quality issues. The relative position of the nipple in the image, the acoustic shadow caused by the nipple as well as the shape of the breast contour reflect patient positioning and ultrasound transducer handling. Morphological and histogram-based features utilized for machine learning to reproduce the manual classification as provided by the clinicians. At 97 % specificity, the automatic classification achieved sensitivities of 59 %, 45 %, and 46 % for the three aforementioned aspects, respectively. The nipple is an important landmark in breast imaging, which is generally---but not always correctly---pinpointed by the technicians. An existing nipple detection algorithm was extended by probabilistic atlases and exploited for automatic detection of incorrectly annotated nipple marks. The nipple detection rate was increased from 82 % to 85 % and the classification achieved 90 % sensitivity at 89 % specificity. A lack of contact fluid between transducer and skin can induce reverberation patterns and acoustic shadows, which can possibly obscure lesions. Parameter maps were computed in order to localize these artefact regions and yielded a detection rate of 83 % at 2.6 false positives per image. Parts of the presented work were integrated to clinical workflow making up a novel image quality assessment system that supported technicians in their daily routine by detecting images of insufficient quality and indicating potential improvements for a repeated scan while the patient was still in the examination room. First evaluations showed that the proposed method sensitises technicians for the radiologists' demands on diagnostically valuable images

    The holistic perspective of the INCISIVE Project: artificial intelligence in screening mammography

    Get PDF
    Finding new ways to cost-effectively facilitate population screening and improve cancer diagnoses at an early stage supported by data-driven AI models provides unprecedented opportunities to reduce cancer related mortality. This work presents the INCISIVE project initiative towards enhancing AI solutions for health imaging by unifying, harmonizing, and securely sharing scattered cancer-related data to ensure large datasets which are critically needed to develop and evaluate trustworthy AI models. The adopted solutions of the INCISIVE project have been outlined in terms of data collection, harmonization, data sharing, and federated data storage in compliance with legal, ethical, and FAIR principles. Experiences and examples feature breast cancer data integration and mammography collection, indicating the current progress, challenges, and future directions.This research received funding mainly from the European Union’s Horizon 2020 research and innovation program under grant agreement no 952179. It was also partially funded by the Ministry of Economy, Industry, and Competitiveness of Spain under contracts PID2019-107255GB and 2017-SGR-1414.Peer ReviewedArticle signat per 30 autors/es: Ivan Lazic (1), Ferran Agullo (2), Susanna Ausso (3), Bruno Alves (4), Caroline Barelle (4), Josep Ll. Berral (2), Paschalis Bizopoulos (5), Oana Bunduc (6), Ioanna Chouvarda (7), Didier Dominguez (3), Dimitrios Filos (7), Alberto Gutierrez-Torre (2), Iman Hesso (8), Nikša Jakovljević (1), Reem Kayyali (8), Magdalena Kogut-Czarkowska (9), Alexandra Kosvyra (7), Antonios Lalas (5) , Maria Lavdaniti (10,11), Tatjana Loncar-Turukalo (1),Sara Martinez-Alabart (3), Nassos Michas (4,12), Shereen Nabhani-Gebara (8), Andreas Raptopoulos (6), Yiannis Roussakis (13), Evangelia Stalika (7,11), Chrysostomos Symvoulidis (6,14), Olga Tsave (7), Konstantinos Votis (5) Andreas Charalambous (15) / (1) Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (2) Barcelona Supercomputing Center, 08034 Barcelona, Spain; (3) Fundació TIC Salut Social, Ministry of Health of Catalonia, 08005 Barcelona, Spain; (4) European Dynamics, 1466 Luxembourg, Luxembourg; (5) Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (6) Telesto IoT Solutions, London N7 7PX, UK: (7) School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (8) Department of Pharmacy, Kingston University London, London KT1 2EE, UK; (9) Timelex BV/SRL, 1000 Brussels, Belgium; (10) Nursing Department, International Hellenic University, 57400 Thessaloniki, Greece; (11) Hellenic Cancer Society, 11521 Athens, Greece; (12) European Dynamics, 15124 Athens, Greece; (13) German Oncology Center, Department of Medical Physics, Limassol 4108, Cyprus; (14) Department of Digital Systems, University of Piraeus, 18534 Piraeus, Greece; (15) Department of Nursing, Cyprus University of Technology, Limassol 3036, CyprusPostprint (published version
    • …
    corecore