768 research outputs found

    Proteogenomic insights suggest druggable pathways in endometrial carcinoma

    Get PDF
    We characterized a prospective endometrial carcinoma (EC) cohort containing 138 tumors and 20 enriched normal tissues using 10 different omics platforms. Targeted quantitation of two peptides can predict antigen processing and presentation machinery activity, and may inform patient selection for immunotherapy. Association analysis between MYC activity and metformin treatment in both patients and cell lines suggests a potential role for metformin treatment in non-diabetic patients with elevated MYC activity. PIK3R1 in-frame indels are associated with elevated AKT phosphorylation and increased sensitivity to AKT inhibitors. CTNNB1 hotspot mutations are concentrated near phosphorylation sites mediating pS45-induced degradation of β-catenin, which may render Wnt-FZD antagonists ineffective. Deep learning accurately predicts EC subtypes and mutations from histopathology images, which may be useful for rapid diagnosis. Overall, this study identified molecular and imaging markers that can be further investigated to guide patient stratification for more precise treatment of EC

    Advanced lateral flow assays for point of care diagnostics

    Get PDF
    Lateral Flow Assays (LFAs) für den Einsatz in medizinischen Anwendungen sind ein wichtiges Werkzeug für die schnelle und zuverlässige Diagnose vor Ort, durch den Patienten selbst und/oder medizinisches Fachpersonal. LFAs bieten verwertbare Informationen in einer Analysezeit von ≤ 30 min, wobei besonders schnelle Tests auch in weniger als 5 min Ergebnisse liefern können. Diese Diagnoseinstrumente sind deshalb perfekt geeignet für Anwendungen in den Bereichen Präzisionsmedizin und der patientennahen Diagnostik vor Ort, wenn sofort verfügbare Informationen oder kosteneffiziente Tests zur Überwachung von Medikamentenspiegeln benötigt werden. Wenn präzise quantitative Ergebnisse gebraucht werden, ist der Einsatz technischer Messgeräte unverzichtbar. Diese müssen tragbar und nach Möglichkeit günstig, sowie leicht verfügbar sein. Aus diesem Grund sind moderne Smartphones mit hochwertigen Kamerasystemen und starker Rechenleistung eine hervorragende Wahl. Aufgenommene Fotos können dabei unter den richtigen Rahmenbedingungen ähnlich gute Ergebnisse liefern wie professionelle Laborgeräte. Zusätzlich zum gewählten Messgerät ist das verwendete Label, bzw. Farbstoff, eine bestimmende Größe für die Leistungsfähigkeit, insbesondere für die Sensitivität und multiplex Eignung, eines LFA. Hier kommen meist Gold-Nanopartikel (AuNPs) zur Anwendung. Insgesamt wurden 3 LFA Tests für den Einsatz zum Monitoring von Digoxin und zur Analyse der Entzündungs- und Koagulationsbiomarker C-reaktives Protein (CRP), Interleukin-6 (IL-6) und Thrombin in Blutproben erforscht und die Ergebnisse publiziert. Gute Resultate wurden dabei in den Themenbieten Smartphone Bildgebung, sowie optisches Multiplexing, durch den Einsatz von grünen und roten, sog. Quantenpunkten (QDs) als Label, erzielt. Im ersten Teil wurde ein Low-Tech Smartphone-Auswertungssystem für die Blutspiegelanalyse des Herzglykosids Digoxin erstellt. Dazu wurden Fotos von einem iPone 5S, unter Verwendung einer einfachen Dunkelkammer aus schwarzem Karton, aufgenommen und mit einer individuell programmierten Shiny app ausgewertet. Die quantitativen Ergebnisse wurden mit den Messdaten eines professionellen Labor Imager verglichen, wodurch wir zeigen konnten, dass es nur geringe Unterschiede in den erreichten Assay Kennzahlen gibt (19.8 bzw. 16.9 nmol/L Detektionslimit). Der 10 Digoxin LFA deckt den therapeutisch relevanten Bereich ab, so dass er für das Monitoring dieses potentiell toxischen Medikaments, mit einem schmalen therapeutischen Fenster, in kurzen Intervallen geeignet ist. Es wurden Gold- Nanopartikel mit 50nm Durchmesser in einem kompetitiven Format verwendet. Der kolorimetrische Assay ist mit den meisten kommerziell erhältlichen, professionellen Messgeräten auswertbar, weil die verwendeten AuNP Farbstoffe dem meistverwendeten Typ entsprechen und daher kompatibel sind. Der Test bewies exzellente Leistung und ist geeignet für kosteneffiziente Anwendungen im Monitoring von Therapeutika, zu Haus, oder in ressourcenarmen Umgebungen. Die Verwendung von Gold Nanopartikel Farbstoffen ohne Nachbearbeitungsschritte hat jedoch Beschränkungen in der Sensitivität und der Eignung zum optischen Multiplexing. Im zweiten Teil wurden rote und grüne, fluoreszierende Quantenpunkten (QD) als Label für einen schnellen optischen duplex LFA zur quantitativen Analyse der Entzündungsbiomarker Interleukin-6 (IL-6) und C-reaktives-Protein (CRP) verwendet. Der Assay ist designed als Sandwich Immunoassay für die gleichzeitige Auswertung von rot (IL-6) und grün (CRP) emittierenden, QD gelabelten Antikörpern gegen die Ziel- Analyten. Wir erreichten damit einen sehr sensitiven Assay, der dabei helfen kann Sepsis und andere inflammatorische Ereignisse zu unterscheiden. Zusammen mit dem Assay erstellten wir die MultiFlow Shiny App und verwendeten diese für die Bearbeitung und das Management der erhaltenen Datensätze. Die App kann für die Auswertung aller Streifen- oder Linien Assays verwendet werden. Sie verfügt über Werkzeuge zur Bildverarbeitung, fortgeschrittene Hintergrundkorrektur und kann Kalibrierungsprofile für eingeschleuste Assays erstellen, welche Kennzahlen wie Limit of Detection (LOD), Limit of Quantification (LOQ) und Limit of Blank (LOB) aus angepassten linearen Modellen berechnen. Die Bildgebung erfolgte dabei durch einen professionellen Labor Imager, welcher mit passenden optischen Emissionsfiltern zur farblichen Trennung der verwendeten Quantenpunkte bestückt war. Der Assay bewies eine hohe Leistungsfähigkeit, aber das komplexe und sperrige Auswertungssystem reduziert das Potential für Point of Care Anwendungen, weil es nicht tragbar ist. Im dritten Teil wurden Quantenpunkte als Label benutzt um einen LFA für die Entzündungs- und Gerinnungsbiomarker IL-6 und Thrombin durchzuführen. Grüne QD Antikörper Konjugate wurden zur Messung von IL-6 benutzt. Zur Detektion von Thrombin wurde jedoch ein Konjugat aus roten QDs und Thrombin bindenden Aptameren (TBA) benutzt. Der Hybrid-Assay kombiniert 2 verschiedene Klassen von 11 Fängermolekülen in einem schnellen Einstufigen LFA, wobei wir über optische duplex Auswertung beide Proteine gleichzeitig bestimmen konnten. Zur Bildgebung wurde ein 3D-gedruckter LFA Imager mit eingebauter UV-LED-Lichtquelle in Kombination mit einem Huawei P30 Pro Smartphone benutzt. Beim Auswerten der Fotos wurden die RGB-Farbkanäle getrennt. Danach konnten die erzeugten Bilder des grünen und roten Kanals direkt zur Quantifizierung von beiden Analyten, IL-6 und Thrombin, genutzt werden. Auch wenn der LOD von IL-6 nicht die gleiche Sensitivität erreichte wie der Sepsis Assay aus Publikation 2, so ist die optische duplex-Auswertung von Smartphone Fotos, insbesondere in Kombination mit unserem 3D-gedrukten, günstigen, und leicht verfügbaren Open-Source Imager ein großer Erfolg um die multiplex Eignung von LFAs zu erhöhen. Die Kombination von Aptameren als Fängermolekülen erschließt zusätzlich neue Möglichkeiten. Der Assay könnte weiterführend mit der Multiflow Shiny App aus Publikation 2 gekoppelt werden, indem zum Werkzeugkasten der App ein RGB-Separator-Modul hinzugefügt wird. Der erforschte Assay erfüllt daher alle Voraussetzungen, um als Muster für künftige, schnelle und günstige multiplex LFAs mit Smartphone Auswertung zu dienen. Das Setup ist dabei besonders geeignet zum Einsatz beim Home-Monitoring oder in Infrastruktur-Schwachen Gebieten.Lateral flow assays (LFAs) for medical applications are an important tool allowing patients and/or medical professionals to perform rapid and reliable diagnostics directly onsite. Because LFAs provide usable information with a time to result of ≤ 30 min or even as little as 5 min, this diagnostic tool is well suited for applications in precision medicine and point of care (POC) diagnostics, in which rapid results or cost effective drug monitoring are needed. If accurate quantitative results are required, readout hardware is mandatory. Readers should be portable, and ideally inexpensive and easily available. In this regard, smartphones, with their increasing photography capability and computational power, are an excellent choice as readers. Images acquired by smartphones can provide results of similar quality to those of professional laboratory equipment in certain settings. Beyond the imaging hardware, the label, such as commonly used gold nanoparticles (AuNPs), is an essential component in LFAs, determining their sensitivity and multiplexing capabilities. In total, we researched three LFA assays for use in drug monitoring of digoxin or screening of the blood inflammation and coagulation biomarkers C-reactive protein (CRP), interleukin-6 (IL-6) and thrombin and published the results. Progress was achieved in smartphone imaging and optical multiplexing, using green and red quantum dots (QDs) as labels. In the first part, a low-tech smartphone readout system for drug monitoring of cardiac glycoside digoxin was built. Images acquired with an iPhone 5S and a simple darkbox made from black cardboard were processed with a customized Shiny app. The quantitative results were compared with data acquired with a professional laboratory imager, and only minor differences were observed in key assay measures (19.8–16.9 nmol/L limit of detection). The assay is suitable for detecting the clinically relevant range and thus could be used for close interval home monitoring of this potentially toxic drug with a narrow therapeutic window. For the digoxin LFAs, we used spherical AuNPs with 50 nm diameter in a competitive setup. The colorimetric assay is compatible with most commercially available, professional lateral flow readers, because the chosen AuNP dye poses the common standard. The setup demonstrated excellent performance and is suitable for cost effective drug monitoring at patient´s homes or in resource poor areas. However, the use of AuNP dyes without postprocessing steps has limited sensitivity and lacks multiplexing capability. 8 For the second part, we chose red and green fluorescent QDs as labels to achieve a rapid optical duplex LFA for quantitative detection of the inflammation biomarkers IL-6 and CRP. The assay was designed as a sandwich immunoassay for simultaneous readout of red (IL-6) and green (CRP) emitting QD labeled antibodies against the target analytes. We achieved a highly sensitive and rapid POC assay that could aid in distinguishing between sepsis and other inflammatory events. Along with the assay, we created the MultiFlow Shiny app, which was used to process and manage data from our assay but could also be used for easy and rapid data handling of all strip- or line-based assays. The software includes tools for image processing and advanced background correction, and it can generate calibration profiles for assays, including key measures such as the limit of detection, limit of quantification and limit of blank for fitted linear models. Readout was performed with a professional laboratory imager equipped with suitable emission color filters that were matched to the used QD labels. Although the assay performed well, the specialized and bulky readout system limited the potential for POC applications, because of its lack of portability. In the third part, we used QD labels to develop a duplex LFA for the inflammation and coagulation biomarkers IL-6 and thrombin. Green QD antibody conjugates were used for detection of IL-6. For detection of thrombin, however, we used conjugates of thrombin binding aptamers and red QDs for detection of thrombin. The hybrid assay combined two different classes of capture molecules in a rapid single-step assay while achieving optical duplexing for the readout of both target proteins simultaneously. For imaging, a 3D-printed LFA imager with an inbuilt LED UV light source in combination with a Huawei P30 Pro smartphone was used. Images were processed by separation of RGB channels. The generated green and red channel images could then be directly used for quantification of both analytes, IL-6, and thrombin. Although the limit of detection for IL-6 did not attain the achieved sensitivity of the sepsis assay in Publication 2, the optical duplexing from a single smartphone image is a major achievement for enhancing the multiplexing capabilities of LFAs with affordable and easily available readout hardware, such as our open source 3D-printed smartphone imager. In particular, the combination with aptamers as capture molecules enables new possibilities. In the future, the assay could be combined with the MultiFlow Shiny app from Publication 2 by adding an RGB separator module to the toolkit. Therefore, this assay holds promise for further applications in rapid and affordable diagnostic tool based multiplex LFAs for smartphone readout, even in homes or areas with limited 9 resources and infrastructure

    Selection of high affinity and specific aptamer and its' use in different applications for the detection of the anaphylactic b-conglutin allergen

    Get PDF
    Lupin és una planta lleguminosa amb un alt valor nutricional utilitzada àmpliament a la regió mediterrània en els àpats diaris, aliments fermentats tradicionals, aliments al forn i salses, sense contenir gluten, podent ser el substitut de la soja. Lupin va ser afegit recentment a la llista d'al·lèrgens que requereixen l'etiquetatge obligatori d'assessorament sobre els productes alimentaris comercialitzats a la Unió Europea, i des de desembre de 2006, tots els productes que continguin fins i tot petites quantitats de tramús han d'estar correctament etiquetats. L'etiquetatge és d'alta importància ja que encara no hi ha un medicament que pugui prevenir les al·lèrgies alimentàries i l'única opció és evitar estrictament l'aliment que causa l'al·lèrgia. Les globulines que es troben en el tramús consisteixen en dos grans subunitats denominades α-conglutina i β-conglutina, i dos menors, γ-conglutina i δ-conglutina. β-conglutina és l'única conglutina actualment inclosa en la llista de la Unió Internacional de Societats d'Immunologia (UISI), designada com l’al·lergen anafilàctic Lup an 1. L'objectiu d'aquest treball és la detecció de l'al·lergen anafilàctic β-conglutina. Han estat descrits aspectes fonamentals com ara la selecció d'un aptàmer (β-CBA II) en contra de β-conglutina i l'avaluació de la seva afinitat i especificitat. Es van utilitzar tres metodologies diferents per a els estudis competitius i es va demostrar que l’aptàmer β-CBA II s’uneix a un lloc diferent de β-conglutina en comparació amb l’aptàmer mencionat anteriorment (β-CBA I). Finalment, el seleccionat aptàmer β-CBA II es va utilitzar per detectar β-conglutina desenvolupant-se una plataforma sensible, ràpida i fàcil d'usar, amb possibilitat d'adaptar-se al punt d'atenció.Lupino es una planta leguminosa con un alto valor nutricional utilizada ampliamente en la región mediterránea en las comidas diarias, alimentos fermentados tradicionales, alimentos horneados y salsas, sin contener gluten, pudiendo ser el sustituto de la soja. Lupino fue añadido recientemente a la lista de alérgenos que requieren el etiquetado obligatorio de asesoramiento sobre los productos alimenticios comercializados en la Unión Europea, y desde diciembre de 2006, todos los productos que contengan incluso pequeñas cantidades de altramuz deben estar correctamente etiquetados. El etiquetado es de alta importancia ya que todavía no existe un medicamento que pueda prevenir las alergias alimentarias y la única opción es evitar estrictamente el alimento que causa la alergia. Las globulinas que se encuentran en el altramuz consisten en dos grandes subunidades denominadas α-conglutina y β-conglutina, y dos menores, γ-conglutina y δ-conglutina. β-conglutina es la única conglutina actualmente incluida en la lista de la Unión Internacional de Sociedades de Inmunología (UISI), designada como el alérgeno anafiláctico Lup an 1. El objetivo de este trabajo es la detección del alérgeno anafiláctico β-conglutina. Han sido descritos aspectos fundamentales tales como la selección de un aptámero (β-CBA II) en contra de β-conglutina y la evaluación de su afinidad y especificidad. Se utilizaron tres metodologías diferentes para los estudios competitivos y se demostró que el aptámero β-CBA II se une en un sitio diferente de β-conglutina en comparación con el aptámero mencionado anteriormente (β-CBA I). Finalmente, el seleccionado aptámero β-CBA II se usó para detectar β-conglutina desarrollándose una plataforma sensible, rápida y fácil de usar, con posibilidad de adaptarse en el punto de atención.Lupin is a leguminous plant with a high nutritional value used widely in the Mediterranean region such as everyday meals, traditional fermented foods, baked foods and sauces with gluten-free properties and a chance for being the soy substitute. Lupin has recently been added to the list of allergens requiring mandatory advisory labelling on foodstuffs sold in the European Union, and since December 2006 all products containing even trace amounts of lupin must be labelled correctly. Labelling is high important since there is not yet a medication that can prevent food allergies and only strict avoidance of the allergy-causing food is the way to prevent a reaction. Lupin globulins consist of two major globulins termed α-conglutin and β-conglutin, and two minor globulins, γ-conglutin and δ-conglutin. β-conglutin is the only conglutin currently included in the list of the International Union of Immunological Societies (IUIS), designated as the anaphylactic Lup an 1 allergen. This work overviews the detection of the anaphylactic β-conglutin allergen. Fundamental aspects such as the selection of a second aptamer (β-CBA II) against β-conglutin and the evaluation of its affinity and specificity have been described. Three different methodologies were used for the competitive studies and it was demonstrated that the β-CBA II aptamer binds to the different aptatope of β-conglutin compared to the aptamer reported previously (β-CBA I). Finally, selected β-CBA II aptamer was used to detect β-conglutin using a sensitive, rapid and user-friendly platform, which can be easily adapted as point-of-care tests

    Novel optics-based approaches for cardiac electrophysiology: a review

    Get PDF
    Optical techniques for recording and manipulating cellular electrophysiology have advanced rapidly in just a few decades. These developments allow for the analysis of cardiac cellular dynamics at multiple scales while largely overcoming the drawbacks associated with the use of electrodes. The recent advent of optogenetics opens up new possibilities for regional and tissue-level electrophysiological control and hold promise for future novel clinical applications. This article, which emerged from the international NOTICE workshop in 20181, reviews the state-of-the-art optical techniques used for cardiac electrophysiological research and the underlying biophysics. The design and performance of optical reporters and optogenetic actuators are reviewed along with limitations of current probes. The physics of light interaction with cardiac tissue is detailed and associated challenges with the use of optical sensors and actuators are presented. Case studies include the use of fluorescence recovery after photobleaching and super-resolution microscopy to explore the micro-structure of cardiac cells and a review of two photon and light sheet technologies applied to cardiac tissue. The emergence of cardiac optogenetics is reviewed and the current work exploring the potential clinical use of optogenetics is also described. Approaches which combine optogenetic manipulation and optical voltage measurement are discussed, in terms of platforms that allow real-time manipulation of whole heart electrophysiology in open and closed-loop systems to study optimal ways to terminate spiral arrhythmias. The design and operation of optics-based approaches that allow high-throughput cardiac electrophysiological assays is presented. Finally, emerging techniques of photo-acoustic imaging and stress sensors are described along with strategies for future development and establishment of these techniques in mainstream electrophysiological research

    Microarray analysis of GFP-expressing mouse Dopamine neurons isolated by laser capture microdissection

    Get PDF
    The Central Nervous System (CNS) contains an enormous variety of cell types which organize in complex networks. The lack of adequate markers to discern unequivocally among this cellular heterogeneity make the task of dissecting out such neural networks and the cells that comprise them very challenging. The present study represents a \u201cbottom-up\u201d approach that entails a description of A9 and A10 nuclei, which are components of the mesencephalic dopaminergic system, and the identification of their molecular make-up through microarray analysis of their gene expression profiles. These mesencephalic dopaminergic nuclei give rise to the mesocortical and mesostriatal projections and are well known for their roles in initiation of movement, reward behaviour and neurobiology of addiction. Moreover, in post mortem brains of Parkinson Disease patients a specific topographic pattern of degeneration of these neurons, also recapitulated in experimental animal models, is noted, with A9 neurons presenting with a higher vulnerability to degeneration with respect to A10 cells among which, neuron loss is almost negligible. Molecular differences may be at the basis of this different susceptibility. In this study we have optimized a protocol for laser-assisted microdissection of fluorescent-expressing cells and have taken advantage of a line of transgenic mice TH-GFP/21-31, which express GFP under the TH promoter in all CA cells, to guide laser capture microdissection of A9 and A10 mDA neurons for differential informative cDNA microarray profiling. Results show that our optimized method retains the GFP-fluorescence of DA cells and achieves good tissue morphology visualization. Moreover, RNA of high quality and good reproducibility of hybridizations support the validity of the protocol. Many of the genes that resulted differentially expressed from this analysis were found to be genes previously known to specifically define the different identities of the two DA neuronal nuclei. Transcripts were verified for expression, in DA neurons, using the collection of in situ hybridization in the Allen Brain Atlas. We have identified 592 differentially expressed transcripts (less than 8%) of which 242 showing higher expression in A9 and 350 showing higher expression in A10. Categorical analysis showed that transcripts associated with mitochondria and energy production were enriched in A9, while transcripts involved in redox homeostasis and stress response resulted enriched in A10. Of all the differentially expressed genes, eight transcripts (Mif, Hnt, Ndufa10, Aurka, Cs, enriched in A9 neurons and Pdia5, Whrn, and Gpx3 enriched in A10 neurons), verified with the Allen Brain Atlas and not noted or confirmed as differentially expressed before, emerged from this analysis. These and other selected genes are discussed
    corecore