5,239 research outputs found

    Pre and Post-hoc Diagnosis and Interpretation of Malignancy from Breast DCE-MRI

    Full text link
    We propose a new method for breast cancer screening from DCE-MRI based on a post-hoc approach that is trained using weakly annotated data (i.e., labels are available only at the image level without any lesion delineation). Our proposed post-hoc method automatically diagnosis the whole volume and, for positive cases, it localizes the malignant lesions that led to such diagnosis. Conversely, traditional approaches follow a pre-hoc approach that initially localises suspicious areas that are subsequently classified to establish the breast malignancy -- this approach is trained using strongly annotated data (i.e., it needs a delineation and classification of all lesions in an image). Another goal of this paper is to establish the advantages and disadvantages of both approaches when applied to breast screening from DCE-MRI. Relying on experiments on a breast DCE-MRI dataset that contains scans of 117 patients, our results show that the post-hoc method is more accurate for diagnosing the whole volume per patient, achieving an AUC of 0.91, while the pre-hoc method achieves an AUC of 0.81. However, the performance for localising the malignant lesions remains challenging for the post-hoc method due to the weakly labelled dataset employed during training.Comment: Submitted to Medical Image Analysi

    Quantitative Analysis of Dynamic Contrast-Enhanced Magnetic Resonance Breast Images: Optimization of the Time-to-Peak as a Diagnostic Indicator

    Get PDF
    Dynamic contrast-enhanced MRI (DCE-MRI) has been widely used in the diagnosis of breast cancer and as an aid in the management of this disease. Although DCE-MRI has a high sensitivity for the detection of malignant breast lesions, distinguishing malignant from benign lesions is more challenging for this method and may depend to some extent on how the images are analysed. Although clinical assessment of these images typically involves qualitative assessment by an expert, there is growing interest in the development of quantitative and automated methods to assist the expert assessment. This thesis involves the quantitative analysis of a particular empirical feature of the time evolution of the DCE-MRI signal known as the time-to-peak ( 7 ^ ) . In particular, this thesis investigates die feasibility of applying measures sensitive to 7 ^ heterogeneity as indicators for malignancy in breast DCE-MRI. Breast lesions in this study were automatically segmented by K-means clustering. Voxel- by-voxel 7\u27peak values were extracted using an empirical model. The / 1th percentile values (p = 10, 20...) of the 7’peak distribution within each lesion, as well as the fractional and absolute hot spot volumes were determined, where hot spot volume refers to the volume of tissue with 7 ^ less than a threshold value. Using the area under the receiver operating characteristic curve (AUC), these measures were tested as indicators for differentiating fibroadenomas from invasive lesions and from ductal carcinoma in situ, as well as for differentiating non-fibroadenoma benign lesions from these malignant lesions. For differentiating fibroadenomas from malignant lesions, low percentile values (p = 10) provided high diagnostic performance. At the optimal threshold (3 min), the hot spot volume provided high diagnostic performance. However, non-fibroadenoma benign lesions were quite difficult to distinguish from malignant lesions. This thesis demonstrates that quantitative analysis of the 7’peak distribution can be optimized for diagnostic performance providing indicators sensitive to intra-lesion r peak heterogeneity

    AI-enhanced diagnosis of challenging lesions in breast MRI: a methodology and application primer

    Get PDF
    Computer-aided diagnosis (CAD) systems have become an important tool in the assessment of breast tumors with magnetic resonance imaging (MRI). CAD systems can be used for the detection and diagnosis of breast tumors as a “second opinion” review complementing the radiologist’s review. CAD systems have many common parts such as image pre-processing, tumor feature extraction and data classification that are mostly based on machine learning (ML) techniques. In this review paper, we describe the application of ML-based CAD systems in MRI of the breast covering the detection of diagnostically challenging lesions such as non-mass enhancing (NME) lesions, multiparametric MRI, neo-adjuvant chemotherapy (NAC) and radiomics all applied to NME. Since ML has been widely used in the medical imaging community, we provide an overview about the state-ofthe-art and novel techniques applied as classifiers to CAD systems. The differences in the CAD systems in MRI of the breast for several standard and novel applications for NME are explained in detail to provide important examples illustrating: (i) CAD for the detection and diagnosis, (ii) CAD in multi-parametric imaging (iii) CAD in NAC and (iv) breast cancer radiomics. We aim to provide a comparison between these CAD applications and to illustrate a global view on intelligent CAD systems based on ANN in MRI of the breast

    Magnetic resonance imaging tumor regression shrinkage patterns after neoadjuvant chemotherapy in patients with locally advanced breast cancer: correlation with tumor biological subtypes and pathological response after therapy

    Get PDF
    The objective of this study is to analyze magnetic resonance imaging shrinkage pattern of tumor regression after neoadjuvant chemotherapy and to evaluate its relationship with biological subtypes and pathological response. We reviewed the magnetic resonance imaging studies of 51 patients with single mass-enhancing lesions (performed at time 0 and at the II and last cycles of neoadjuvant chemotherapy). Tumors were classified as Luminal A, Luminal B, HER2+, and Triple Negative based on biological and immunohistochemical analysis after core needle biopsy. We classified shrinkage pattern, based on tumor regression morphology on magnetic resonance imaging at the II cycle, as concentric, nodular, and mixed. We assigned a numeric score (0: none; 1: low; 2: medium; 3: high) to the enhancement intensity decrease. Pathological response on the surgical specimen was classified as complete (grade 5), partial (grades 4-3), and non-response (grades 1-2) according to Miller and Payne system. Fisher test was used to relate shrinkage pattern with biological subtypes and final pathological response. Seventeen patients achieved complete response, 25 partial response, and 9 non-response. A total of 13 lesions showed nodular pattern, 20 concentric, and 18 mixed. We found an association between concentric pattern and HER2+ (p < 0.001) and mixed pattern and Luminal A lesions (p < 0.001). We observed a statistical significant correlation between concentric pattern and complete response (p < 0.001) and between mixed pattern and non-response (p = 0.005). Enhancement intensity decrease 3 was associated with complete response (p < 0.001). Shrinkage pattern and enhancement intensity decrease may serve as early response indicators after neoadjuvant chemotherapy. Shrinkage pattern correlates with tumor biological subtypes

    Computer-aided detection and diagnosis of breast cancer in 2D and 3D medical imaging through multifractal analysis

    Get PDF
    This Thesis describes the research work performed in the scope of a doctoral research program and presents its conclusions and contributions. The research activities were carried on in the industry with Siemens S.A. Healthcare Sector, in integration with a research team. Siemens S.A. Healthcare Sector is one of the world biggest suppliers of products, services and complete solutions in the medical sector. The company offers a wide selection of diagnostic and therapeutic equipment and information systems. Siemens products for medical imaging and in vivo diagnostics include: ultrasound, computer tomography, mammography, digital breast tomosynthesis, magnetic resonance, equipment to angiography and coronary angiography, nuclear imaging, and many others. Siemens has a vast experience in Healthcare and at the beginning of this project it was strategically interested in solutions to improve the detection of Breast Cancer, to increase its competitiveness in the sector. The company owns several patents related with self-similarity analysis, which formed the background of this Thesis. Furthermore, Siemens intended to explore commercially the computer- aided automatic detection and diagnosis eld for portfolio integration. Therefore, with the high knowledge acquired by University of Beira Interior in this area together with this Thesis, will allow Siemens to apply the most recent scienti c progress in the detection of the breast cancer, and it is foreseeable that together we can develop a new technology with high potential. The project resulted in the submission of two invention disclosures for evaluation in Siemens A.G., two articles published in peer-reviewed journals indexed in ISI Science Citation Index, two other articles submitted in peer-reviewed journals, and several international conference papers. This work on computer-aided-diagnosis in breast led to innovative software and novel processes of research and development, for which the project received the Siemens Innovation Award in 2012. It was very rewarding to carry on such technological and innovative project in a socially sensitive area as Breast Cancer.No cancro da mama a deteção precoce e o diagnóstico correto são de extrema importância na prescrição terapêutica e caz e e ciente, que potencie o aumento da taxa de sobrevivência à doença. A teoria multifractal foi inicialmente introduzida no contexto da análise de sinal e a sua utilidade foi demonstrada na descrição de comportamentos siológicos de bio-sinais e até na deteção e predição de patologias. Nesta Tese, três métodos multifractais foram estendidos para imagens bi-dimensionais (2D) e comparados na deteção de microcalci cações em mamogramas. Um destes métodos foi também adaptado para a classi cação de massas da mama, em cortes transversais 2D obtidos por ressonância magnética (RM) de mama, em grupos de massas provavelmente benignas e com suspeição de malignidade. Um novo método de análise multifractal usando a lacunaridade tri-dimensional (3D) foi proposto para classi cação de massas da mama em imagens volumétricas 3D de RM de mama. A análise multifractal revelou diferenças na complexidade subjacente às localizações das microcalci cações em relação aos tecidos normais, permitindo uma boa exatidão da sua deteção em mamogramas. Adicionalmente, foram extraídas por análise multifractal características dos tecidos que permitiram identi car os casos tipicamente recomendados para biópsia em imagens 2D de RM de mama. A análise multifractal 3D foi e caz na classi cação de lesões mamárias benignas e malignas em imagens 3D de RM de mama. Este método foi mais exato para esta classi cação do que o método 2D ou o método padrão de análise de contraste cinético tumoral. Em conclusão, a análise multifractal fornece informação útil para deteção auxiliada por computador em mamogra a e diagnóstico auxiliado por computador em imagens 2D e 3D de RM de mama, tendo o potencial de complementar a interpretação dos radiologistas

    Pharmacokinetic Analysis of Gd-DTPA Enhancement in dynamic three-dimensional MRI of breast lesions

    Get PDF
    The purpose of this study was to demonstrate that dynamic MRI covering both breasts can provide sensitivity for tumor detection as well as specificity and sensitivity for differentiation of tumor malignancy. Three-dimensional gradient echo scans were used covering both breasts. Before Gd-DTPA bolus injection, two scans were obtained with different flip angles, and after injection, a dynamic series followed. Thirty-two patients were scanned according to this protocol. From these scans, in addition to enhancement, the value of T1 before injection was obtained. This was used to estimate the concentration of Gd-DTPA as well as the pharmacokinetic parameters governing its time course. Signal enhancement in three-dimensional dynamic scanning was shown to be a sensitive basis for detection of tumors. In our series, all but two mam-mographically suspicious lesions did enhance, and in three cases, additional enhancing lesions were found, two of which were in the contralateral breast. The parameter most suited for classification of breast lesions into benign or malignant was shown to be the pharmacokinetically defined permeability k31, which, for that test, gave a sensitivity of 92% and a specificity of 70%. Our three-dimensional dynamic MRI data are sensitive for detection of mammographically occult breast tumors and specific for classification of these as benign or malignant
    corecore