135 research outputs found

    Automated detection of epileptic ripples in MEG using beamformer-based virtual sensors

    Get PDF
    Objective. In epilepsy, high-frequency oscillations (HFOs) are expressively linked to the seizure onset zone (SOZ). The detection of HFOs in the noninvasive signals from scalp electroencephalography (EEG) and magnetoencephalography (MEG) is still a challenging task. The aim of this study was to automate the detection of ripples in MEG signals by reducing the high-frequency noise using beamformer-based virtual sensors (VSs) and applying an automatic procedure for exploring the time-frequency content of the detected events. Approach. Two-hundred seconds of MEG signal and simultaneous iEEG were selected from nine patients with refractory epilepsy. A two-stage algorithm was implemented. Firstly, beamforming was applied to the whole head to delimitate the region of interest (ROI) within a coarse grid of MEG-VS. Secondly, a beamformer using a finer grid in the ROI was computed. The automatic detection of ripples was performed using the time-frequency response provided by the Stockwell transform. Performance was evaluated through comparisons with simultaneous iEEG signals. Main results. ROIs were located within the seizure-generating lobes in the nine subjects. Precision and sensitivity values were 79.18% and 68.88%, respectively, by considering iEEG-detected events as benchmarks. A higher number of ripples were detected inside the ROI compared to the same region in the contralateral lobe. Significance. The evaluation of interictal ripples using non-invasive techniques can help in the delimitation of the epileptogenic zone and guide placement of intracranial electrodes. This is the first study that automatically detects ripples in MEG in the time domain located within the clinically expected epileptic area taking into account the time-frequency characteristics of the events through the whole signal spectrum. The algorithm was tested against intracranial recordings, the current gold standard. Further studies should explore this approach to enable the localization of noninvasively recorded HFOs to help during pre-surgical planning and to reduce the need for invasive diagnostics.Peer ReviewedPostprint (author's final draft

    Brain Connectivity Networks for the Study of Nonlinear Dynamics and Phase Synchrony in Epilepsy

    Get PDF
    Assessing complex brain activity as a function of the type of epilepsy and in the context of the 3D source of seizure onset remains a critical and challenging endeavor. In this dissertation, we tried to extract the attributes of the epileptic brain by looking at the modular interactions from scalp electroencephalography (EEG). A classification algorithm is proposed for the connectivity-based separation of interictal epileptic EEG from normal. Connectivity patterns of interictal epileptic discharges were investigated in different types of epilepsy, and the relation between patterns and the epileptogenic zone are also explored in focal epilepsy. A nonlinear recurrence-based method is applied to scalp EEG recordings to obtain connectivity maps using phase synchronization attributes. The pairwise connectivity measure is obtained from time domain data without any conversion to the frequency domain. The phase coupling value, which indicates the broadband interdependence of input data, is utilized for the graph theory interpretation of local and global assessment of connectivity activities. The method is applied to the population of pediatric individuals to delineate the epileptic cases from normal controls. A probabilistic approach proved a significant difference between the two groups by successfully separating the individuals with an accuracy of 92.8%. The investigation of connectivity patterns of the interictal epileptic discharges (IED), which were originated from focal and generalized seizures, was resulted in a significant difference ( ) in connectivity matrices. It was observed that the functional connectivity maps of focal IED showed local activities while generalized cases showed global activated areas. The investigation of connectivity maps that resulted from temporal lobe epilepsy individuals has shown the temporal and frontal areas as the most affected regions. In general, functional connectivity measures are considered higher order attributes that helped the delineation of epileptic individuals in the classification process. The functional connectivity patterns of interictal activities can hence serve as indicators of the seizure type and also specify the irritated regions in focal epilepsy. These findings can indeed enhance the diagnosis process in context to the type of epilepsy and effects of relative location of the 3D source of seizure onset on other brain areas

    Epilepsy

    Get PDF
    With the vision of including authors from different parts of the world, different educational backgrounds, and offering open-access to their published work, InTech proudly presents the latest edited book in epilepsy research, Epilepsy: Histological, electroencephalographic, and psychological aspects. Here are twelve interesting and inspiring chapters dealing with basic molecular and cellular mechanisms underlying epileptic seizures, electroencephalographic findings, and neuropsychological, psychological, and psychiatric aspects of epileptic seizures, but non-epileptic as well

    Magnetoencephalography

    Get PDF
    This is a practical book on MEG that covers a wide range of topics. The book begins with a series of reviews on the use of MEG for clinical applications, the study of cognitive functions in various diseases, and one chapter focusing specifically on studies of memory with MEG. There are sections with chapters that describe source localization issues, the use of beamformers and dipole source methods, as well as phase-based analyses, and a step-by-step guide to using dipoles for epilepsy spike analyses. The book ends with a section describing new innovations in MEG systems, namely an on-line real-time MEG data acquisition system, novel applications for MEG research, and a proposal for a helium re-circulation system. With such breadth of topics, there will be a chapter that is of interest to every MEG researcher or clinician
    corecore