259 research outputs found

    Cardiomyocytes from human pluripotent stem cells: from laboratory curiosity to industrial biomedical platform

    Get PDF
    Cardiomyocytes from human pluripotent stem cells (hPSCs-CMs) could revolutionise biomedicine. Global burden of heart failure will soon reach USD $90bn, while unexpected cardiotoxicity underlies 28% of drug withdrawals. Advances in hPSC isolation, Cas9/CRISPR genome engineering and hPSC-CM differentiation have improved patient care, progressed drugs to clinic and opened a new era in safety pharmacology. Nevertheless, predictive cardiotoxicity using hPSC-CMs contrasts from failure to almost total success. Since this likely relates to cell immaturity, efforts are underway to use biochemical and biophysical cues to improve many of the ~ 30 structural and functional properties of hPSC-CMs towards those seen in adult CMs. Other developments needed for widespread hPSC-CM utility include subtype specification, cost reduction of large scale differentiation and elimination of the phenotyping bottleneck. This review will consider these factors in the evolution of hPSC-CM technologies, as well as their integration into high content industrial platforms that assess structure, mitochondrial function, electrophysiology, calcium transients and contractility. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel

    Automated image analysis system for studying cardiotoxicity in human pluripotent stem cell-Derived cardiomyocytes

    Get PDF
    BackgroundCardiotoxicity, characterized by severe cardiac dysfunction, is a major problem in patients treated with different classes of anticancer drugs. Development of predictable human-based models and assays for drug screening are crucial for preventing potential drug-induced adverse effects. Current animal in vivo models and cell lines are not always adequate to represent human biology. Alternatively, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) show great potential for disease modelling and drug-induced toxicity screenings. Fully automated high-throughput screening of drug toxicity on hiPSC-CMs by fluorescence image analysis is, however, very challenging, due to clustered cell growth patterns and strong intracellular and intercellular variation in the expression of fluorescent markers.ResultsIn this paper, we report on the development of a fully automated image analysis system for quantification of cardiotoxic phenotypes from hiPSC-CMs that are treated with various concentrations of anticancer drugs doxorubicin or crizotinib. This high-throughput system relies on single-cell segmentation by nuclear signal extraction, fuzzy C-mean clustering of cardiac α-actinin signal, and finally nuclear signal propagation. When compared to manual segmentation, it generates precision and recall scores of 0.81 and 0.93, respectively.ConclusionsOur results show that our fully automated image analysis system can reliably segment cardiomyocytes even with heterogeneous α-actinin signals.Computer Systems, Imagery and MediaAlgorithms and the Foundations of Software technolog

    Development of in vitro Drug Screening Platforms Using Human Induced Pluripotent Stem Cell-Derived Cardiovascular Cells

    Get PDF
    Drug-induced cardiotoxicity is a critical challenge in the development of new drugs. Since the advent of human pluripotent stem cell-derived cardiomyocytes (CMs), researchers have explored ways to utilize these cells for in vitro preclinical drug screening applications. One area of interest is microphysiological systems (i.e. organ-on-a-chip), which aims to create more complex in vitro models of human organ systems, thus improving drug response predictions. In this dissertation, we investigated novel analysis methods and model platforms for detecting drug-induced cardiotoxicity using human induced pluripotent stem cell (iPSC)-derived cardiovascular cells. First, we utilized human iPSC-derived CMs (iPS-CMs) to establish optical methods of detecting cardioactive compounds. We utilized optical flow to assess the iPS-CM contractions captured using brightfield microscopy. The parameters were then analyzed using a machine learning algorithm to determine the accuracy of detection that can be obtained by the model for a given drug concentration. This result was compared to the analysis of the calcium transients measured using a genetically encoded calcium indicator (GCaMP6). The brightfield contraction analysis matched the detection sensitivity of fluorescent calcium transient analysis, while also being able to detect the effects of excitation-contraction decoupler (blebbistatin), which was not detected using calcium transient analysis. Second, we utilize iPS-CMs to model trastuzumab-related cardiotoxicity. Trastuzumab, a monoclonal antibody against ErbB2 (Her2), is used to treat Her2+ breast cancer and has known clinical cardiotoxicity. We demonstrated that an active ErbB2 signaling via binding of neuregulin-1 (NRG-1) to ErbB4 is necessary to detect the cardiotoxic effects of trastuzumab. Activation of ErbB2/4 pathway via NRG-1 is cardioprotective, and we also demonstrated that heparin-binding epidermal growth factor-like growth factor (HB-EGF) similarly activates the ErbB2/4 pathway. Finally, we established a co-culture platform of iPS-CMs and endothelial cells (ECs), which recapitulated the physiological phenomenon of EC-secreted NRG-1 activating the ErbB2/4 pathway on the CMs. Third, we demonstrated the use of human iPSC-derived ECs (iPS-ECs) for creating 3-dimensionial vascular networks inside microfluidic devices. The iPS-ECs were characterized for EC markers and physiological functions. We utilized a CDH5-mCherry iPSC line to create iPS-ECs that expressed VE-cadherin fused to mCherry. The vascular networks formed by the iPS-ECs were patent and perfusable, retaining 70 kDa dextran within the lumen of the vessels. The vasculature responded to small molecule inhibitors, showing increased vessel formation in response to TGF-β inhibitor SB431542 and decreased vessel formation in response to multi-targeted receptor tyrosine kinase inhibitor sunitinib. Taken together, our findings advance the current understanding and utility of iPS-CMs for drug screening applications, while establishing platforms for creating microphysiological systems that incorporate iPS-EC co-culture. The use of iPSC-derived cells opens possibilities for disease-specific and patient-specific drug screening applications in the future

    Development of a Novel Platform for in vitro Electrophysiological Recording

    Get PDF
    The accurate monitoring of cell electrical activity is of fundamental importance for pharmaceutical research and pre-clinical trials that impose to check the cardiotoxicity of all new drugs. Traditional methods for preclinical evaluation of drug cardiotoxicity exploit animal models, which tend to be expensive, low throughput, and exhibit species-specific differences in cardiac physiology (Mercola, Colas and Willems, 2013). Alternative approaches use heterologous expression of cardiac ion channels in non-cardiac cells transfected with genetic material. However, the use of these constructs and the inhibition of specific ionic currents alone is not predictive of cardiotoxicity. Drug toxicity evaluation based on the human ether-\ue0-go-go-related gene (hERG) channel, for example, leads to a high rate of false-positive cardiotoxic compounds, increasing drug attrition at the preclinical stage. Consequently, from 2013, the Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative focused on experimental methods that identify cardiotoxic drugs and to improve upon prior models that have largely used alterations in the hERG potassium ion channel. The most predictive models for drug cardiotoxicity must recapitulate the complex spatial distribution of the physiologically distinct myocytes of the intact adult human heart. However, intact human heart preparations are inherently too costly, difficult to maintain, and, hence, too low throughput to be implemented early in the drug development pipeline. For these reasons the optimization of methodologies to differentiate human induced Pluripotent Stem Cells (hiPSCs) into cardiomyocytes (CMs) enabled human CMs to be mass-produced in vitro for cardiovascular disease modeling and drug screening (Sharma, Wu and Wu, 2013). These hiPSC-CMs functionally express most of the ion channels and sarcomeric proteins found in adult human CMs and can spontaneously contract. Recent results from the CiPA initiative have confirmed that, if utilized appropriately, the hiPSC-CM platform can serve as a reliable alternative to existing hERG assays for evaluating arrhythmogenic compounds and can sensitively detect the action potential repolarization effects associated with ion channel\u2013blocking drugs (Millard et al., 2018). Data on drug-induced toxicity in hiPSC-CMs have already been successfully collected by using several functional readouts, such as field potential traces using multi-electrode array (MEA) technology (Clements, 2016), action potentials via voltage-sensitive dyes (VSD) (Blinova et al., 2017) and cellular impedance (Scott et al., 2014). Despite still under discussion, scientists reached a consensus on the value of using electrophysiological data from hiPSC-CM for predicting cardiotoxicity and how it\u2019s possible to further optimize hiPSC-CM-based in vitro assays for acute and chronic cardiotoxicity assessment. In line with CiPA, therefore, the use of hiPSC coupled with MEA technology has been selected as promising readout for these kind of experiments. These platforms are used as an experimental model for studying the cardiac Action Potentials (APs) dynamics and for understanding some fundamental principles about the APs propagation and synchronization in healthy heart tissue. MEA technology utilizes recordings from an array of electrodes embedded in the culture surface of a well. When cardiomyocytes are grown on these surfaces, spontaneous action potentials from a cluster of cardiomyocytes, the so called functional syncytium, can be detected as fluctuations in the extracellular field potential (FP). MEA measures the change in FP as the action potential propagates through the cell monolayer relative to the recording electrode, neverthless FP in the MEA do not allows to recapitualte properly the action potential features. It is clear, therefore, that a MEA technology itself is not enough to implement cardiotoxicity assays on hIPSCs-CMs. Under this issue, researchers spread in the world started to think about solutions to achieve a platform able to works both at the same time as a standard MEA and as a patch clamp, allowing the recording of extracellular signals as usual, with the opportunity to switch to intracellular-like signals from the cytosol. This strong interest stimulated the development of methods for intracellular recording of action potentials. Currently, the most promising results are represented by multi-electrode arrays (MEA) decorated with 3D nanostructures that were introduced in pioneering papers (Robinson et al., 2012; Xie et al., 2012), culminating with the recent work from the group of H. Park (Abbott et al., 2017) and of F. De Angelis (Dipalo et al., 2017). In these articles, they show intracellular recordings on electrodes refined with 3D nanopillars after electroporation and laser optoporation from different kind of cells. However, the requirement of 3D nanostructures set strong limitations to the practical spreading of these techniques. Thus, despite pioneering results have been obtained exploiting laser optoporation, these technologies neither been applied to practical cases nor reached the commercial phase. This PhD thesis introduces the concept of meta-electrodes coupled with laser optoporation for high quality intracellular signals from hiPSCs-CM. These signals can be recorded on high-density commercial CMOS-MEAs from 3Brain characterized by thousands of electrode covered by a thin film of porous Platinum without any rework of the devices, 3D nanostructures or circuitry for electroporation7. Subsequently, I attempted to translate these unique features of low invasiveness and reliability to other commercial MEA platforms, in order to develop a new tool for cardiac electrophysiological accurate recordings. The whole thesis is organized in three main sections: a first single chapters that will go deeper in the scientific and technological background, including an explanation of the cell biology of hiPSCs-CM followed by a full overview of MEA technology and devices. Then, I will move on state-of-the-art approaches of intracellular recording, discussing many works from the scientific literature. A second chapter will describe the main objectives of the whole work, and a last chapter with the main results of the activity. A final chapter will resume and recapitulate the conclusion of the work

    Effects of Spaceflight on Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Structure and Function.

    Get PDF
    With extended stays aboard the International Space Station (ISS) becoming commonplace, there is a need to better understand the effects of microgravity on cardiac function. We utilized human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to study the effects of microgravity on cell-level cardiac function and gene expression. The hiPSC-CMs were cultured aboard the ISS for 5.5 weeks and their gene expression, structure, and functions were compared with ground control hiPSC-CMs. Exposure to microgravity on the ISS caused alterations in hiPSC-CM calcium handling. RNA-sequencing analysis demonstrated that 2,635 genes were differentially expressed among flight, post-flight, and ground control samples, including genes involved in mitochondrial metabolism. This study represents the first use of hiPSC technology to model the effects of spaceflight on human cardiomyocyte structure and function

    MESENCHYMAL STEM CELLS: AN INNOVATIVE APPROACH IN PHARMACOKINETICS

    Get PDF
    ABSTRACTMultipotent mesenchymal stem cells (MSCs) are special kind of stem cells which originate from mesenchyme. These cells can be used as an imperativetool to study reproductive toxicity, carcinogenicity, mutagenicity, genotoxicity, and pharmacokinetics. This novel system may reveal toxicantinducedetiology, decipher detailed understanding on molecular mechanisms of toxicants induced pathways and also enumerate the safe dose ofan investigational product. Hence, this could ultimately replace, improve or overtake current predictive models in toxicology. The particular reviewdescribes the utilization of MSCs in different field of toxicological and pharmacological research.Keywords: Mesenchymal stem cells, Toxicant, Etiology, Pharmacokinetics

    Human Induced Pluripotent Stem Cell as a Disease Modeling and Drug Development Platform—A Cardiac Perspective

    Get PDF
    A comprehensive understanding of the pathophysiology and cellular responses to drugs in human heart disease is limited by species differences between humans and experimental animals. In addition, isolation of human cardiomyocytes (CMs) is complicated because cells obtained by biopsy do not proliferate to provide sufficient numbers of cells for preclinical studies in vitro. Interestingly, the discovery of human-induced pluripotent stem cell (hiPSC) has opened up the possibility of generating and studying heart disease in a culture dish. The combination of reprogramming and genome editing technologies to generate a broad spectrum of human heart diseases in vitro offers a great opportunity to elucidate gene function and mechanisms. However, to exploit the potential applications of hiPSC-derived-CMs for drug testing and studying adult-onset cardiac disease, a full functional characterization of maturation and metabolic traits is required. In this review, we focus on methods to reprogram somatic cells into hiPSC and the solutions for overcome immaturity of the hiPSC-derived-CMs to mimic the structure and physiological properties of the adult human CMs to accurately model disease and test drug safety. Finally, we discuss how to improve the culture, differentiation, and purification of CMs to obtain sufficient numbers of desired types of hiPSC-derived-CMs for disease modeling and drug development platform
    • …
    corecore