1,662 research outputs found

    Previous, current, and future stereotactic EEG techniques for localising epileptic foci

    Get PDF
    INTRODUCTION: Drug-resistant focal epilepsy presents a significant morbidity burden globally, and epilepsy surgery has been shown to be an effective treatment modality. Therefore, accurate identification of the epileptogenic zone for surgery is crucial, and in those with unclear noninvasive data, stereoencephalography is required. AREAS COVERED: This review covers the history and current practices in the field of intracranial EEG, particularly analyzing how stereotactic image-guidance, robot-assisted navigation, and improved imaging techniques have increased the accuracy, scope, and use of SEEG globally. EXPERT OPINION: We provide a perspective on the future directions in the field, reviewing improvements in predicting electrode bending, image acquisition, machine learning and artificial intelligence, advances in surgical planning and visualization software and hardware. We also see the development of EEG analysis tools based on machine learning algorithms that are likely to work synergistically with neurophysiology experts and improve the efficiency of EEG and SEEG analysis and 3D visualization. Improving computer-assisted planning to minimize manual input from the surgeon, and seamless integration into an ergonomic and adaptive operating theater, incorporating hybrid microscopes, virtual and augmented reality is likely to be a significant area of improvement in the near future

    Multimodality Neuromonitoring in Adult Traumatic Brain Injury A Narrative Review

    Get PDF
    Neuromonitoring plays an important role in the management of traumatic brain injury. Simultaneous assessment of cerebral hemodynamics, oxygenation, and metabolism allows an individualized approach to patient management in which therapeutic interventions intended to prevent or minimize secondary brain injury are guided by monitored changes in physiologic variables rather than generic thresholds. This narrative review describes various neuromonitoring techniques that can be used to guide the management of patients with traumatic brain injury and examines the latest evidence and expert consensus guidelines for neuromonitoring

    Visual and semiautomated evaluation of epileptogenicity in focal cortical dysplasias - An intracranial EEG study

    Get PDF
    INTRODUCTION: The aim of the study was the evaluation of the added value of depth to subdural electrodes in delineating epileptogenicity of focal cortical dysplasias (FCDs) and to test the Epileptogenicity Index (EI) in this setting. MATERIAL AND METHODS: Fifteen patients with FCD underwent iEEG with subdural and depth electrodes. Visual/EI analysis was performed in up to three habitual seizures per patient. RESULTS: Visual analysis: Grid onset seizures (n=10) started in electrodes overlying the lesion in 7 and remote from it in 3 cases. Depth onset seizures (n=7) affected only intralesional contacts in 4, intra- and extralesional in 2, and exclusively extralesional in 1 patient. Seizures started in depth and grid contacts simultaneously in 2 cases. EI analysis: The EI completely confirmed visual localization of seizure onset in 8 cases and depicted ictal onset-time accurately in 13. Beta/gamma ictal patterns were most reliably captured. Impact on surgical decision: Resection outline differed from MRI lesion in 7 patients based on grid and in three based on depth electrode information. DISCUSSION: In FCD, seizures can be generated within gyral/deep tissue appearing normal on imaging. CONCLUSION: Investigating FCD with subdural and depth electrodes is efficient to outline the seizure onset zone. The EI is a helpful additional tool to quantify epileptogenicity. Specific ictal patterns are prerequisite for reliable results

    SEEG assistant: a 3DSlicer extension to support epilepsy surgery

    Get PDF

    Retrospective evaluation and SEEG trajectory analysis for interactive multi-trajectory planner assistant

    Get PDF
    Purpose: Focal epilepsy is a neurological disease that can be surgically treated by removing area of the brain generating the seizures. The stereotactic electroencephalography (SEEG) procedure allows patient brain activity to be recorded in order to localize the onset of seizures through the placement of intracranial electrodes. The planning phase can be cumbersome and very time consuming, and no quantitative information is provided to neurosurgeons regarding the safety and efficacy of their trajectories. In this work, we present a novel architecture specifically designed to ease the SEEG trajectory planning using the 3D Slicer platform as a basis. Methods: Trajectories are automatically optimized following criteria like vessel distance and insertion angle. Multi-trajectory optimization and conflict resolution are optimized through a selective brute force approach based on a conflict graph construction. Additionally, electrode-specific optimization constraints can be defined, and an advanced verification module allows neurosurgeons to evaluate the feasibility of the trajectory. Results: A retrospective evaluation was performed using manually planned trajectories on 20 patients: the planning algorithm optimized and improved trajectories in 98% of cases. We were able to resolve and optimize the remaining 2% by applying electrode-specific constraints based on manual planning values. In addition, we found that the global parameters used discards 68% of the manual planned trajectories, even when they represent a safe clinical choice. Conclusions: Our approach improved manual planned trajectories in 98% of cases in terms of quantitative indexes, even when applying more conservative criteria with respect to actual clinical practice. The improved multi-trajectory strategy overcomes the previous work limitations and allows electrode optimization within a tolerable time span

    Focal Spot, Spring 2002

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1090/thumbnail.jp
    • …
    corecore