6,637 research outputs found

    Automated Identification of Cell Type Specific Genes in the Mouse Brain by Image Computing of Expression Patterns

    Get PDF
    Background: Differential gene expression patterns in cells of the mammalian brain result in the morphological, connectional, and functional diversity of cells. A wide variety of studies have shown that certain genes are expressed only in specific cell-types. Analysis of cell-type-specific gene expression patterns can provide insights into the relationship between genes, connectivity, brain regions, and cell-types. However, automated methods for identifying cell-type-specific genes are lacking to date. Results: Here, we describe a set of computational methods for identifying cell-type-specific genes in the mouse brain by automated image computing of in situ hybridization (ISH) expression patterns. We applied invariant image feature descriptors to capture local gene expression information from cellular-resolution ISH images. We then built image-level representations by applying vector quantization on the image descriptors. We employed regularized learning methods for classifying genes specifically expressed in different brain cell-types. These methods can also rank image features based on their discriminative power. We used a data set of 2,872 genes from the Allen Brain Atlas in the experiments. Results showed that our methods are predictive of cell-type-specificity of genes. Our classifiers achieved AUC values of approximately 87% when the enrichment level is set to 20. In addition, we showed that the highly-ranked image features captured the relationship between cell-types. Conclusions: Overall, our results showed that automated image computing methods could potentially be used to identify cell-type-specific genes in the mouse brain

    Machine Learning Methods for Medical and Biological Image Computing

    Get PDF
    Medical and biological imaging technologies provide valuable visualization information of structure and function for an organ from the level of individual molecules to the whole object. Brain is the most complex organ in body, and it increasingly attracts intense research attentions with the rapid development of medical and bio-logical imaging technologies. A massive amount of high-dimensional brain imaging data being generated makes the design of computational methods for eļ¬ƒcient analysis on those images highly demanded. The current study of computational methods using hand-crafted features does not scale with the increasing number of brain images, hindering the pace of scientiļ¬c discoveries in neuroscience. In this thesis, I propose computational methods using high-level features for automated analysis of brain images at diļ¬€erent levels. At the brain function level, I develop a deep learning based framework for completing and integrating multi-modality neuroimaging data, which increases the diagnosis accuracy for Alzheimerā€™s disease. At the cellular level, I propose to use three dimensional convolutional neural networks (CNNs) for segmenting the volumetric neuronal images, which improves the performance of digital reconstruction of neuron structures. I design a novel CNN architecture such that the model training and testing image prediction can be implemented in an end-to-end manner. At the molecular level, I build a voxel CNN classiļ¬er to capture discriminative features of the input along three spatial dimensions, which facilitate the identiļ¬cation of secondary structures of proteins from electron microscopy im-ages. In order to classify genes speciļ¬cally expressed in diļ¬€erent brain cell-type, I propose to use invariant image feature descriptors to capture local gene expression information from cellular-resolution in situ hybridization images. I build image-level representations by applying regularized learning and vector quantization on generated image descriptors. The developed computational methods in this dissertation are evaluated using images from medical and biological experiments in comparison with baseline methods. Experimental results demonstrate that the developed representations, formulations, and algorithms are eļ¬€ective and eļ¬ƒcient in learning from brain imaging data

    The INCF Digital Atlasing Program: Report on Digital Atlasing Standards in the Rodent Brain

    Get PDF
    The goal of the INCF Digital Atlasing Program is to provide the vision and direction necessary to make the rapidly growing collection of multidimensional data of the rodent brain (images, gene expression, etc.) widely accessible and usable to the international research community. This Digital Brain Atlasing Standards Task Force was formed in May 2008 to investigate the state of rodent brain digital atlasing, and formulate standards, guidelines, and policy recommendations.

Our first objective has been the preparation of a detailed document that includes the vision and specific description of an infrastructure, systems and methods capable of serving the scientific goals of the community, as well as practical issues for achieving
the goals. This report builds on the 1st INCF Workshop on Mouse and Rat Brain Digital Atlasing Systems (Boline et al., 2007, _Nature Preceedings_, doi:10.1038/npre.2007.1046.1) and includes a more detailed analysis of both the current state and desired state of digital atlasing along with specific recommendations for achieving these goals

    Two-photon imaging and analysis of neural network dynamics

    Full text link
    The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behaviour. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so called 'microcircuits') remains comparably poor. In large parts, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near- millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.Comment: 36 pages, 4 figures, accepted for publication in Reports on Progress in Physic

    Comprehensive mapping of tissue cell architecture via integrated single cell and spatial transcriptomics

    Get PDF
    elocation-id: 2020.11.15.378125elocation-id: 2020.11.15.378125The spatial organization of cell types in tissues fundamentally shapes cellular interactions and function, but the high-throughput spatial mapping of complex tissues remains a challenge. We present сell2location, a principled and versatile Bayesian model that integrates single-cell and spatial transcriptomics to map cell types in situ in a comprehensive manner. We show that сell2location outperforms existing tools in accuracy and comprehensiveness and we demonstrate its utility by mapping two complex tissues. In the mouse brain, we use a new paired single nucleus and spatial RNA-sequencing dataset to map dozens of cell types and identify tissue regions in an automated manner. We discover novel regional astrocyte subtypes including fine subpopulations in the thalamus and hypothalamus. In the human lymph node, we resolve spatially interlaced immune cell states and identify co-located groups of cells underlying tissue organisation. We spatially map a rare pre-germinal centre B-cell population and predict putative cellular interactions relevant to the interferon response. Collectively our results demonstrate how сell2location can serve as a versatile first-line analysis tool to map tissue architectures in a high-throughput manner.Competing Interest StatementThe authors have declared no competing interest

    Automated data integration for developmental biological research

    Get PDF
    In an era exploding with genome-scale data, a major challenge for developmental biologists is how to extract significant clues from these publicly available data to benefit our studies of individual genes, and how to use them to improve our understanding of development at a systems level. Several studies have successfully demonstrated new approaches to classic developmental questions by computationally integrating various genome-wide data sets. Such computational approaches have shown great potential for facilitating research: instead of testing 20,000 genes, researchers might test 200 to the same effect. We discuss the nature and state of this art as it applies to developmental research
    • ā€¦
    corecore