3,525 research outputs found

    Online GIS services for mapping and sharing disease information

    Get PDF
    Ā© 2008 Gao et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Improving Antibiotic Resistant Infection Transmission Situational Awareness in Enclosed Facilities with a Novel Graphical User Interface for Tactical Biosurveillance

    Get PDF
    Serious challenges associated with antibiotic resistant infections (ABRIs) force healthcare practitioners (HCP) to seek innovative approaches that will slow the emergence of new ABRIs and prevent their spread. It was realized that traditional approaches to infection prevention based on education, retrospective reports, and biosurveillance often fail to ensure reliable compliance with infection prevention guidelines and real-time problem solving. The objective of this original research was to develop and test the conceptual design of a situational awareness (SA)-oriented information system for coping with healthcare-associated infection transmission. Constantly changing patterns in spatial distribution of patients, prevalence of infectious cases, clustering of contacts, and frequency of contacts may compromise the effectiveness of infection prevention and control in hospitals. It was hypothesized that providing HCPs with a graphical user interface (GUI) to visualize spatial information on the risks of exposure to ABRIs would effectively increase HCPsā€™ SA. Increased SA may enhance biosurveillance and result in tactical decisions leading to better patient outcomes. The study employed a mixed qualitative-quantitative research method encompassing conceptualization of GUI content, transcription of electronic health record and biosurveillance data into GUI visual artifacts, and evaluation of the GUIā€™s impact on HCPsā€™ perception and comprehension of the conditions that increase the risk of ABRI transmission. The study provided pilot evidence that visualization of spatial disease distribution and spatially-linked exposures and interventions significantly increases HCPsā€™ SA when compared to current practice. The research demonstrates that the SA-oriented GUI enables the HCPs to promptly answer the question, ā€œAt a given location, what are the risks of infection transmission there?ā€ This research provides a new form of medical knowledge representation for spatial population-based decision-making within enclosed environments. The next steps include rapid application development and further hypothesis testing concerning the impact of this GUI on decsion-making

    Efficient Decision Support Systems

    Get PDF
    This series is directed to diverse managerial professionals who are leading the transformation of individual domains by using expert information and domain knowledge to drive decision support systems (DSSs). The series offers a broad range of subjects addressed in specific areas such as health care, business management, banking, agriculture, environmental improvement, natural resource and spatial management, aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs; Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications of DSSs in multidisciplinary domains. The book is shaped decision support strategies in the new infrastructure that assists the readers in full use of the creative technology to manipulate input data and to transform information into useful decisions for decision makers

    Text-based Spatial and Temporal Visualizations and their Applications in Visual Analytics

    Get PDF
    Textual labels are an essential part of most visualizations used in practice. However, these textual labels are mainly used to annotate other visualizations rather than being a central part of the visualization. Visualization researchers in areas like cartography and geovisualization have studied the combination of graphical features and textual labels to generate map based visualizations, but textual labels alone are not the primary focus in these representations. The idea of using symbols in visual representations and their interpretation as a quantity is gaining more traction. These types of representations are not only aesthetically appealing but also present new possibilities of encoding data. Such scenarios regularly arise while designing visual representations, where designers have to investigate feasibility of encoding information using symbols alone especially textual labels but the lack of readily available automated tools, and design guidelines makes it prohibitively expensive to experiment with such visualization designs. In order to address such challenges, this thesis presents the design and development of visual representations consisting entirely of text. These visual representations open up the possibility of encoding different types of spatial and temporal datasets. We report our results through two novel visualizations: typographic maps and text-based TextRiver visualization. Typographic maps merge text and spatial data into a visual representation where text alone forms the graphical features, mimicking the practices of human map makers. We also introduce methods to combine our automatic typographic maps technique with spatial datasets to generate thema-typographic maps where the properties of individual characters in the map are modified based on the underlying spatial data. Our TextRiver visualization is composed of collection of stream-like shapes consisting entirely of text where each stream represents thematic strength variations over time within a corpus. Such visualization enables additional ways to encode information contained in temporal datasets by modifying text attributes. We also conducted a usability evaluation to assess the potential value of our text-based TextRiver design

    Emerging technologies to measure neighborhood conditions in public health: Implications for interventions and next steps

    Get PDF
    Adverse neighborhood conditions play an important role beyond individual characteristics. There is increasing interest in identifying specific characteristics of the social and built environments adversely affecting health outcomes. Most research has assessed aspects of such exposures via self-reported instruments or census data. Potential threats in the local environment may be subject to short-term changes that can only be measured with more nimble technology. The advent of new technologies may offer new opportunities to obtain geospatial data about neighborhoods that may circumvent the limitations of traditional data sources. This overview describes the utility, validity and reliability of selected emerging technologies to measure neighborhood conditions for public health applications. It also describes next steps for future research and opportunities for interventions. The paper presents an overview of the literature on measurement of the built and social environment in public health (Google Street View, webcams, crowdsourcing, remote sensing, social media, unmanned aerial vehicles, and lifespace) and location-based interventions. Emerging technologies such as Google Street View, social media, drones, webcams, and crowdsourcing may serve as effective and inexpensive tools to measure the ever-changing environment. Georeferenced social media responses may help identify where to target intervention activities, but also to passively evaluate their effectiveness. Future studies should measure exposure across key time points during the life-course as part of the exposome paradigm and integrate various types of data sources to measure environmental contexts. By harnessing these technologies, public health research can not only monitor populations and the environment, but intervene using novel strategies to improve the public health

    Towards Developing Computer Vision Algorithms and Architectures for Real-world Applications

    Get PDF
    abstract: Computer vision technology automatically extracts high level, meaningful information from visual data such as images or videos, and the object recognition and detection algorithms are essential in most computer vision applications. In this dissertation, we focus on developing algorithms used for real life computer vision applications, presenting innovative algorithms for object segmentation and feature extraction for objects and actions recognition in video data, and sparse feature selection algorithms for medical image analysis, as well as automated feature extraction using convolutional neural network for blood cancer grading. To detect and classify objects in video, the objects have to be separated from the background, and then the discriminant features are extracted from the region of interest before feeding to a classifier. Effective object segmentation and feature extraction are often application specific, and posing major challenges for object detection and classification tasks. In this dissertation, we address effective object flow based ROI generation algorithm for segmenting moving objects in video data, which can be applied in surveillance and self driving vehicle areas. Optical flow can also be used as features in human action recognition algorithm, and we present using optical flow feature in pre-trained convolutional neural network to improve performance of human action recognition algorithms. Both algorithms outperform the state-of-the-arts at their time. Medical images and videos pose unique challenges for image understanding mainly due to the fact that the tissues and cells are often irregularly shaped, colored, and textured, and hand selecting most discriminant features is often difficult, thus an automated feature selection method is desired. Sparse learning is a technique to extract the most discriminant and representative features from raw visual data. However, sparse learning with \textit{L1} regularization only takes the sparsity in feature dimension into consideration; we improve the algorithm so it selects the type of features as well; less important or noisy feature types are entirely removed from the feature set. We demonstrate this algorithm to analyze the endoscopy images to detect unhealthy abnormalities in esophagus and stomach, such as ulcer and cancer. Besides sparsity constraint, other application specific constraints and prior knowledge may also need to be incorporated in the loss function in sparse learning to obtain the desired results. We demonstrate how to incorporate similar-inhibition constraint, gaze and attention prior in sparse dictionary selection for gastroscopic video summarization that enable intelligent key frame extraction from gastroscopic video data. With recent advancement in multi-layer neural networks, the automatic end-to-end feature learning becomes feasible. Convolutional neural network mimics the mammal visual cortex and can extract most discriminant features automatically from training samples. We present using convolutinal neural network with hierarchical classifier to grade the severity of Follicular Lymphoma, a type of blood cancer, and it reaches 91\% accuracy, on par with analysis by expert pathologists. Developing real world computer vision applications is more than just developing core vision algorithms to extract and understand information from visual data; it is also subject to many practical requirements and constraints, such as hardware and computing infrastructure, cost, robustness to lighting changes and deformation, ease of use and deployment, etc.The general processing pipeline and system architecture for the computer vision based applications share many similar design principles and architecture. We developed common processing components and a generic framework for computer vision application, and a versatile scale adaptive template matching algorithm for object detection. We demonstrate the design principle and best practices by developing and deploying a complete computer vision application in real life, building a multi-channel water level monitoring system, where the techniques and design methodology can be generalized to other real life applications. The general software engineering principles, such as modularity, abstraction, robust to requirement change, generality, etc., are all demonstrated in this research.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Utilization of geospatial information for infectious disease prevention : the case of influenza local surveillance in Japan

    Get PDF
    The aim of this paper is to examine the issues of local surveillance using geospatial information related to influenza in Japan. In each specialized agency and local government, local surveillance has been carried out to prevent the spread of infectious diseases on a local scale. In this paper, we examined the distribution of local surveillance data delivery and its spatial scales. A website survey carried out by the author confirmed that specialized agencies and local governments deliver data on a local scale, which is situated below the levels of the Public Health Center or municipality in prefectures with large cities (e.g., Tokyo, Aichi, Hyogo, and Hiroshima). Following the enforcement of the Regional Health Law in 1994, regional differences have also occurred in the delivery of information related to infectious diseases, because of specialized agenciesā€™ diversification efforts. Few efforts to deliver information have been made at the local level by Public Health Centers, County and City Medical Associations. Problems such as differences in the authority of specialized agencies and in the consciousness of a crisis in the face of infectious disease prevention contribute to this issue. Hence, further discussion is needed to strengthen independent local surveillance in each region of Japan

    Developing GIS-based eastern equine encephalitis vector-host models in Tuskegee, Alabama

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A site near Tuskegee, Alabama was examined for vector-host activities of eastern equine encephalomyelitis virus (EEEV). Land cover maps of the study site were created in ArcInfo 9.2<sup>Ā® </sup>from QuickBird data encompassing visible and near-infrared (NIR) band information (0.45 to 0.72 Ī¼m) acquired July 15, 2008. Georeferenced mosquito and bird sampling sites, and their associated land cover attributes from the study site, were overlaid onto the satellite data. SAS 9.1.4<sup>Ā® </sup>was used to explore univariate statistics and to generate regression models using the field and remote-sampled mosquito and bird data. Regression models indicated that <it>Culex erracticus </it>and Northern Cardinals were the most abundant mosquito and bird species, respectively. Spatial linear prediction models were then generated in Geostatistical Analyst Extension of ArcGIS 9.2<sup>Ā®</sup>. Additionally, a model of the study site was generated, based on a Digital Elevation Model (DEM), using ArcScene extension of ArcGIS 9.2<sup>Ā®</sup>.</p> <p>Results</p> <p>For total mosquito count data, a first-order trend ordinary kriging process was fitted to the semivariogram at a partial sill of 5.041 km, nugget of 6.325 km, lag size of 7.076 km, and range of 31.43 km, using 12 lags. For total adult <it>Cx. erracticus </it>count, a first-order trend ordinary kriging process was fitted to the semivariogram at a partial sill of 5.764 km, nugget of 6.114 km, lag size of 7.472 km, and range of 32.62 km, using 12 lags. For the total bird count data, a first-order trend ordinary kriging process was fitted to the semivariogram at a partial sill of 4.998 km, nugget of 5.413 km, lag size of 7.549 km and range of 35.27 km, using 12 lags. For the Northern Cardinal count data, a first-order trend ordinary kriging process was fitted to the semivariogram at a partial sill of 6.387 km, nugget of 5.935 km, lag size of 8.549 km and a range of 41.38 km, using 12 lags. Results of the DEM analyses indicated a statistically significant inverse linear relationship between total sampled mosquito data and elevation (R<sup>2 </sup>= -.4262; p < .0001), with a standard deviation (SD) of 10.46, and total sampled bird data and elevation (R<sup>2 </sup>= -.5111; p < .0001), with a SD of 22.97. DEM statistics also indicated a significant inverse linear relationship between total sampled <it>Cx. erracticus </it>data and elevation (R<sup>2 </sup>= -.4711; p < .0001), with a SD of 11.16, and the total sampled Northern Cardinal data and elevation (R<sup>2 </sup>= -.5831; p < .0001), SD of 11.42.</p> <p>Conclusion</p> <p>These data demonstrate that GIS/remote sensing models and spatial statistics can capture space-varying functional relationships between field-sampled mosquito and bird parameters for determining risk for EEEV transmission.</p
    • ā€¦
    corecore