6,771 research outputs found

    Integration of computer-aided design techniques into the mechanical product development process

    Get PDF
    Computer-Aided Design (CAD) has been called the most significant advance since the development of electricity. CAD is regarded as being the greatest breakthrough of modern times in the search for ways to improve the Product Development Process. This improvement is provided in terms of bringing to market better quality and higher performance products in a significantly shorter design/development cycle and at a lower cost. A survey of the various computer-aided design techniques is presented as they are currently being applied in the mechanical product development process. The research of these techniques includes the basic system operation from a user\u27s perspective, as well as discussion of the relative productivity improvements possible as compared with prior techniques and alternative approaches. The survey results are then enhanced through a case study of the more widely used CAD techniques available to a product design engineer. A typical benchmark part design of a thermoplastic clutch pawl was created and analyzed on some of the latest commercially available computer-aided design systems. This case study, conducted at Xerox Corporation, consisted of both wire frame, surface and solids geometry model creation, mass properties analysis, and finite element model structural analysis

    AWeD (Automatic Weapons Detection)

    Get PDF
    The goal of this project is to design an integrated system that allows for fast and reliable processing of high quality video data and in doing so detect and react to the presence of a firearm or other weaponry when used in a threatening or dangerous manner. This is accomplished through the combined use of computer vision processing techniques implemented on an FPGA as well as a convolutional neural network trained to determine the presence of a threat

    AWeD: Automatic Weapons Detection

    Get PDF
    The goal of this project is to design an integrated system that allows for fast and reliable processing of high quality video data and in doing so detect and react to the presence of a firearm or other weaponry when used in a threatening or dangerous manner. This is accomplished through the combined use of computer vision processing techniques implemented on an FPGA as well as a convolutional neural network trained to determine the presence of a threat

    DeepSecure: Scalable Provably-Secure Deep Learning

    Get PDF
    This paper proposes DeepSecure, a novel framework that enables scalable execution of the state-of-the-art Deep Learning (DL) models in a privacy-preserving setting. DeepSecure targets scenarios in which neither of the involved parties including the cloud servers that hold the DL model parameters or the delegating clients who own the data is willing to reveal their information. Our framework is the first to empower accurate and scalable DL analysis of data generated by distributed clients without sacrificing the security to maintain efficiency. The secure DL computation in DeepSecure is performed using Yao's Garbled Circuit (GC) protocol. We devise GC-optimized realization of various components used in DL. Our optimized implementation achieves more than 58-fold higher throughput per sample compared with the best-known prior solution. In addition to our optimized GC realization, we introduce a set of novel low-overhead pre-processing techniques which further reduce the GC overall runtime in the context of deep learning. Extensive evaluations of various DL applications demonstrate up to two orders-of-magnitude additional runtime improvement achieved as a result of our pre-processing methodology. This paper also provides mechanisms to securely delegate GC computations to a third party in constrained embedded settings

    Automated feature recognition system for supporting engineering activities downstream of conceptual design.

    Full text link
    Transfer of information between CAD models and downstream manufacturing process planning software typically involves redundant user interaction. Many existing tools are process-centric and unsuited for selection of a "best process" in the context of existing concurrent engineering design tools. A computer based Feature-Recognition (FR) process is developed to extract critical manufacturing features from engineering product CAD models. FR technology is used for automating the extraction of data from CAD product models and uses wire-frame geometry extracted from an IGES neutral file format. Existing hint-based feature recognition techniques have been extended to encompass a broader range of manufacturing domains than typical in the literature, by utilizing a combination of algorithms, each successful at a limited range of features. Use of wire-frame models simplifies product geometry and has the potential to support rapid manufacturing shape evaluation at the conceptual design stage. Native CAD files are converted to IGES neutral files to provide geometry data marshalling to remove variations in user modelling practice, and to provide a consistent starting point for FR operations. Wire-frame models are investigated to reduce computer resources compared to surface and solid models, and provide a means to recover intellectual property in terms of manufacturing design intent from legacy and contemporary product models. Geometric ambiguity in regard to what is ?solid? and what is not has plagued wire-frame FR development in the past. A new application of crossing number theory (CNT) has been developed to solve the wire-frame ambiguity problem for a range of test parts. The CNT approach works satisfactorily for products where all faces of the product can be recovered and is tested using a variety of mechanical engineering parts. Platform independent tools like Extensible Mark-up Language are used to capture data from the FR application and provide a means to separate FR and decision support applications. Separate applications are composed of reusable software modules that may be combined as required. Combining rule-based and case-based reasoning provides decision support to the manufacturing application as a means of rejecting unsuitable processes on functional and economic grounds while retaining verifiable decision pathways to satisfy industry regulators

    The Computer Graphics Scene in the United States

    Get PDF
    We briefly survey the major thrusts of computer graphics activities, examining trends and topics rather than offering a comprehensive survey of all that is happening. The directions of professional activities, hardware, software, and algorithms are outlined. Within hardware we examine workstations, personal graphics systems, high performance systems, and low level VLSI chips; within software, standards and interactive system design; within algorithms, visible surface rendering and shading, three-dimensional modeling techniques, and animation. Note: This paper was presented at Eurographics\u2784 in Copenhagen, Denmark

    Fully automated urban traffic system

    Get PDF
    The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible

    3D model reconstruction from vector perpendicular projections

    Get PDF
    This scientific monograph deals with the issue of 3D model reconstruction of a rotation part from its orthogonal projections recorded on a digitalized drawing in vector format and with computer-aided automation of the process. The topic is a partial task of the domain focused on generating the 3D part model or product from a technical drawing. The introduction comments on the analysis of the current state of information in the field. The rules of projecting the parts in a technical drawing are described as well as the related terminology and methods in computer graphics, mathematics and geometry. The computer-aided ways of modeling solids are analyzed. The introductory part is complemented by an overview of existing solutions by other authors and by the possibilities of my own method development. The monograph core is focused on the proposal of proceedings and algorithms for transformation process automation of 2D vector record comprising orthogonal projections representing the rotation part on a 3D model. The pilot implementations of algorithms and their verification by testing on the selected sample of geometric shapes are added

    User defined feature modelling: representing extrinsic form, dimensions and tolerances

    Get PDF
    • …
    corecore