4,180 research outputs found

    Using On-Line Quizzes to Help Students Learn Probability and Statistics

    Get PDF
    Online quizzes can be an effective and flexible means of helping learners develop key skills in probability and statistics. Quizzes give instant feedback, to help reinforce correct understanding and eliminate fundamental errors at an early stage in learning. We will describe our experience of designing and using quizzes with non-specialist and specialist students, on several different platforms including, most recently, Moodle. We describe Model Choice, a tool that helps students identify from a brief scenario the standard family of probability distributions they should work with to solve a problem. We will emphasize key design aspects of a successful quiz system, such as the importance of giving informative feedback to the learner. Using a standard platform, such as Moodle, is likely to require some compromise on design principles but building a stand-alone system to implement ideal design choices is very time-consuming

    Addictive links: The motivational value of adaptive link annotation

    Get PDF
    Adaptive link annotation is a popular adaptive navigation support technology. Empirical studies of adaptive annotation in the educational context have demonstrated that it can help students to acquire knowledge faster, improve learning outcomes, reduce navigational overhead, and encourage non-sequential navigation. In this paper, we present our exploration of a lesser known effect of adaptive annotation, its ability to significantly increase students' motivation to work with non-mandatory educational content. We explored this effect and confirmed its significance in the context of two different adaptive hypermedia systems. The paper presents and discusses the results of our work

    Artificial Intelligence-Enabled Intelligent Assistant for Personalized and Adaptive Learning in Higher Education

    Full text link
    This paper presents a novel framework, Artificial Intelligence-Enabled Intelligent Assistant (AIIA), for personalized and adaptive learning in higher education. The AIIA system leverages advanced AI and Natural Language Processing (NLP) techniques to create an interactive and engaging learning platform. This platform is engineered to reduce cognitive load on learners by providing easy access to information, facilitating knowledge assessment, and delivering personalized learning support tailored to individual needs and learning styles. The AIIA's capabilities include understanding and responding to student inquiries, generating quizzes and flashcards, and offering personalized learning pathways. The research findings have the potential to significantly impact the design, implementation, and evaluation of AI-enabled Virtual Teaching Assistants (VTAs) in higher education, informing the development of innovative educational tools that can enhance student learning outcomes, engagement, and satisfaction. The paper presents the methodology, system architecture, intelligent services, and integration with Learning Management Systems (LMSs) while discussing the challenges, limitations, and future directions for the development of AI-enabled intelligent assistants in education.Comment: 29 pages, 10 figures, 9659 word

    (MU-CTL-01-12) Towards Model Driven Game Engineering in SimSYS: Requirements for the Agile Software Development Process Game

    Get PDF
    Software Engineering (SE) and Systems Engineering (Sys) are knowledge intensive, specialized, rapidly changing disciplines; their educational infrastructure faces significant challenges including the need to rapidly, widely, and cost effectively introduce new or revised course material; encourage the broad participation of students; address changing student motivations and attitudes; support undergraduate, graduate and lifelong learning; and incorporate the skills needed by industry. Games have a reputation for being fun and engaging; more importantly immersive, requiring deep thinking and complex problem solving. We believe educational games are essential in the next generation of e-learning tools. An extensible, freely available, engaging, problem-based game platform that provides students with an interactive simulated experience closely resembling the activities performed in a (real) industry development project would transform the SE/Sys education infrastructure. Our goal is to extend the state-of-the-art research in SE/Sys education by investigating a game development platform (GDP) from an interdisciplinary perspective (education, game research, and software/systems engineering). A meta-model has been proposed to provide a rigourous foundation that integrates the three disciplines. The GDP is intended to support the semi-automated development of collections of scripted games and their execution, where each game embodies a specific set of learning objectives. The games are scripted using a template based approach. The templates integrate three approaches: use cases; storyboards; and state machines (timed, concurrent, hierarchical state machines). The specification templates capture the structure of the game (Game, Acts, Scenes, Screens, Challenges), storyline, characters (player, non-player, external), graphics, music/sound effects, rules, and so on. The instantiated templates are (manually) transformed into XML game scripts that can be loaded into the SimSYS Game Play Engine. As a game is played, the game play events are logged; they are analyzed to automatically assess a player’s accomplishments and automatically adapt the game play script. Currently, we are manually defining a collection of games. The games are being used to ensure the GDP is flexible and reliable (i.e., the prototype can load and correctly run a variety of game scripts), the ontology is comprehensive, and the templates assist in defining well-organized, modular game scripts. In this report, we present the initial part of an Agile Software Development Process game (Act I, Scenes 1 and 2) that embodies learning objectives related to SE fundamentals (requirements, architecture, testing, process); planning with Gantt charts; working with budgets; and selecting a team for an agile development project. A student player is rewarded in the game by getting hired, scoring points, or getting promoted to lead a project. The game has a variety of settings including a classroom, job fair, and a work environment with meeting rooms, cubicles, and a water cooler station. The main non-player characters include a teacher, boss, and an evil peer. In the future, semi-automated support for creating new game scripts will be explored using a wizard interface. The templates will be formally defined, supporting automated transformation into XML game scripts that can be loaded into the SimSYS Game Engine. We also plan to explore transforming the requirements into a notation that can be imported into a commercial tool that supports Statechart simulation

    Pop Quiz! Do Pre-trained Code Models Possess Knowledge of Correct API Names?

    Full text link
    Recent breakthroughs in pre-trained code models, such as CodeBERT and Codex, have shown their superior performance in various downstream tasks. The correctness and unambiguity of API usage among these code models are crucial for achieving desirable program functionalities, requiring them to learn various API fully qualified names structurally and semantically. Recent studies reveal that even state-of-the-art pre-trained code models struggle with suggesting the correct APIs during code generation. However, the reasons for such poor API usage performance are barely investigated. To address this challenge, we propose using knowledge probing as a means of interpreting code models, which uses cloze-style tests to measure the knowledge stored in models. Our comprehensive study examines a code model's capability of understanding API fully qualified names from two different perspectives: API call and API import. Specifically, we reveal that current code models struggle with understanding API names, with pre-training strategies significantly affecting the quality of API name learning. We demonstrate that natural language context can assist code models in locating Python API names and generalize Python API name knowledge to unseen data. Our findings provide insights into the limitations and capabilities of current pre-trained code models, and suggest that incorporating API structure into the pre-training process can improve automated API usage and code representations. This work provides significance for advancing code intelligence practices and direction for future studies. All experiment results, data and source code used in this work are available at \url{https://doi.org/10.5281/zenodo.7902072}

    Adaptive Scaffolding in Block-Based Programming via Synthesizing New Tasks as Pop Quizzes

    Full text link
    Block-based programming environments are increasingly used to introduce computing concepts to beginners. However, novice students often struggle in these environments, given the conceptual and open-ended nature of programming tasks. To effectively support a student struggling to solve a given task, it is important to provide adaptive scaffolding that guides the student towards a solution. We introduce a scaffolding framework based on pop quizzes presented as multi-choice programming tasks. To automatically generate these pop quizzes, we propose a novel algorithm, PQuizSyn. More formally, given a reference task with a solution code and the student's current attempt, PQuizSyn synthesizes new tasks for pop quizzes with the following features: (a) Adaptive (i.e., individualized to the student's current attempt), (b) Comprehensible (i.e., easy to comprehend and solve), and (c) Concealing (i.e., do not reveal the solution code). Our algorithm synthesizes these tasks using techniques based on symbolic reasoning and graph-based code representations. We show that our algorithm can generate hundreds of pop quizzes for different student attempts on reference tasks from Hour of Code: Maze Challenge and Karel. We assess the quality of these pop quizzes through expert ratings using an evaluation rubric. Further, we have built an online platform for practicing block-based programming tasks empowered via pop quiz based feedback, and report results from an initial user study.Comment: Preprint. Accepted as a paper at the AIED'22 conferenc

    Teaching Data Science

    Get PDF
    We describe an introductory data science course, entitled Introduction to Data Science, offered at the University of Illinois at Urbana-Champaign. The course introduced general programming concepts by using the Python programming language with an emphasis on data preparation, processing, and presentation. The course had no prerequisites, and students were not expected to have any programming experience. This introductory course was designed to cover a wide range of topics, from the nature of data, to storage, to visualization, to probability and statistical analysis, to cloud and high performance computing, without becoming overly focused on any one subject. We conclude this article with a discussion of lessons learned and our plans to develop new data science courses.Comment: 10 pages, 4 figures, International Conference on Computational Science (ICCS 2016
    • …
    corecore