2,013 research outputs found

    Automated generation of program translation and verification tools using annotated grammars

    Get PDF
    Automatically generating program translators from source and target language specifications is a non-trivial problem. In this paper we focus on the problem of automating the process of building translators between operations languages, a family of DSLs used to program satellite operations procedures. We exploit their similarities to semi-automatically build transformation tools between these DSLs. The input to our method is a collection of annotated context-free grammars. To simplify the overall translation process even more, we also propose an intermediate representation common to all operations languages. Finally, we discuss how to enrich our annotated grammars model with more advanced semantic annotations to provide a verification system for the translation process. We validate our approach by semi-automatically deriving translators between some real world operations languages, using the prototype tool which we implemented for that purpose

    SAGA: A project to automate the management of software production systems

    Get PDF
    The Software Automation, Generation and Administration (SAGA) project is investigating the design and construction of practical software engineering environments for developing and maintaining aerospace systems and applications software. The research includes the practical organization of the software lifecycle, configuration management, software requirements specifications, executable specifications, design methodologies, programming, verification, validation and testing, version control, maintenance, the reuse of software, software libraries, documentation, and automated management

    A UML/OCL framework for the analysis of fraph transformation rules

    Get PDF
    In this paper we present an approach for the analysis of graph transformation rules based on an intermediate OCL representation. We translate different rule semantics into OCL, together with the properties of interest (like rule applicability, conflicts or independence). The intermediate representation serves three purposes: (i) it allows the seamless integration of graph transformation rules with the MOF and OCL standards, and enables taking the meta-model and its OCL constraints (i.e. well-formedness rules) into account when verifying the correctness of the rules; (ii) it permits the interoperability of graph transformation concepts with a number of standards-based model-driven development tools; and (iii) it makes available a plethora of OCL tools to actually perform the rule analysis. This approach is especially useful to analyse the operational semantics of Domain Specific Visual Languages. We have automated these ideas by providing designers with tools for the graphical specification and analysis of graph transformation rules, including a backannotation mechanism that presents the analysis results in terms of the original language notation

    Software System Model Correctness using Graph Theory: A Review

    Get PDF
    The Unified Modeling Language UML is the de facto standard for object-oriented software model development The UML class diagram plays an essential role in design and specification of software systems The purpose of a class diagram is to display classes with their attributes and methods hierarchy generalization class relationships and associations general aggregation and composition between classes in one mode

    Synthesizing Program Input Grammars

    Full text link
    We present an algorithm for synthesizing a context-free grammar encoding the language of valid program inputs from a set of input examples and blackbox access to the program. Our algorithm addresses shortcomings of existing grammar inference algorithms, which both severely overgeneralize and are prohibitively slow. Our implementation, GLADE, leverages the grammar synthesized by our algorithm to fuzz test programs with structured inputs. We show that GLADE substantially increases the incremental coverage on valid inputs compared to two baseline fuzzers

    The Design & Implementation of an Abstract Semantic Graph for Statement-Level Dynamic Analysis of C++ Applications

    Get PDF
    In this thesis, we describe our system, Hylian, for statement-level analysis, both static and dynamic, of a C++ application. We begin by extending the GNU gcc parser to generate parse trees in XML format for each of the compilation units in a C++ application. We then provide verification that the generated parse trees are structurally equivalent to the code in the original C++ application. We use the generated parse trees, together with an augmented version of the gcc test suite, to recover a grammar for the C++ dialect that we parse. We use the recovered grammar to generate a schema for further verification of the parse trees and evaluate the coverage provided by our C++ test suite. We then extend the parse tree, for each compilation unit, with semantic information to form an abstract semantic graph, ASG, and then link the ASGs for all of the compilation units into a unified ASG for the entire application under study. In addition, to relieve the cognitive burden of information that may inundate a developer, we describe our development of extensions to Hylian to build abbreviated abstract semantic graphs, which incorporate information about user code, but not about compiler provided library code. Finally, we describe the various approaches that we adopted to provide assurance for the developer that the ASGs that Hylian builds, correctly represent the program under study

    June: A Type Testability Transformation for Improved ATG Performance

    Get PDF
    Strings are universal containers: they are flexible to use, abundant in code, and difficult to test. String-controlled programs are programs that make branching decisions based on string input. Automatically generating valid test inputs for these programs considering only character sequences rather than any underlying string-encoded structures, can be prohibitively expensive. We present June, a tool that enables Java developers to expose any present latent string structure to test generation tools. June is an annotation-driven testability transformation and an extensible library, JuneLib, of structured string definitions. The core JuneLib definitions are empirically derived and provide templates for all structured strings in our test set. June takes lightly annotated source code and injects code that permits an automated test generator (ATG) to focus on the creation of mutable substrings inside a structured string. Using June costs the developer little, with an average of 2.1 annotations per string-controlled class. June uses standard Java build tools and therefore deploys seamlessly within a Java project. By feeding string structure information to an ATG tool, June dramatically reduces wasted effort; branches are effortlessly covered that would otherwise be extremely difficult, or impossible, to cover. This waste reduction both increases and speeds coverage. EvoSuite, for example, achieves the same coverage on June-ed classes in 1 minute, on average, as it does in 9 minutes on the un-June-ed class. These gains increase over time. On our corpus, June-ing a program compresses 24 hours of execution time into ca. 2 hours. We show that many ATG tools can reuse the same June-ed code: a few June annotations, a one-off cost, benefit many different testing regimes
    • …
    corecore