4,016 research outputs found

    A Survey on Forensics and Compliance Auditing for Critical Infrastructure Protection

    Get PDF
    The broadening dependency and reliance that modern societies have on essential services provided by Critical Infrastructures is increasing the relevance of their trustworthiness. However, Critical Infrastructures are attractive targets for cyberattacks, due to the potential for considerable impact, not just at the economic level but also in terms of physical damage and even loss of human life. Complementing traditional security mechanisms, forensics and compliance audit processes play an important role in ensuring Critical Infrastructure trustworthiness. Compliance auditing contributes to checking if security measures are in place and compliant with standards and internal policies. Forensics assist the investigation of past security incidents. Since these two areas significantly overlap, in terms of data sources, tools and techniques, they can be merged into unified Forensics and Compliance Auditing (FCA) frameworks. In this paper, we survey the latest developments, methodologies, challenges, and solutions addressing forensics and compliance auditing in the scope of Critical Infrastructure Protection. This survey focuses on relevant contributions, capable of tackling the requirements imposed by massively distributed and complex Industrial Automation and Control Systems, in terms of handling large volumes of heterogeneous data (that can be noisy, ambiguous, and redundant) for analytic purposes, with adequate performance and reliability. The achieved results produced a taxonomy in the field of FCA whose key categories denote the relevant topics in the literature. Also, the collected knowledge resulted in the establishment of a reference FCA architecture, proposed as a generic template for a converged platform. These results are intended to guide future research on forensics and compliance auditing for Critical Infrastructure Protection.info:eu-repo/semantics/publishedVersio

    A forensics and compliance auditing framework for critical infrastructure protection

    Get PDF
    Contemporary societies are increasingly dependent on products and services provided by Critical Infrastructure (CI) such as power plants, energy distribution networks, transportation systems and manufacturing facilities. Due to their nature, size and complexity, such CIs are often supported by Industrial Automation and Control Systems (IACS), which are in charge of managing assets and controlling everyday operations. As these IACS become larger and more complex, encompassing a growing number of processes and interconnected monitoring and actuating devices, the attack surface of the underlying CIs increases. This situation calls for new strategies to improve Critical Infrastructure Protection (CIP) frameworks, based on evolved approaches for data analytics, able to gather insights from the CI. In this paper, we propose an Intrusion and Anomaly Detection System (IADS) framework that adopts forensics and compliance auditing capabilities at its core to improve CIP. Adopted forensics techniques help to address, for instance, post-incident analysis and investigation, while the support of continuous auditing processes simplifies compliance management and service quality assessment. More specifically, after discussing the rationale for such a framework, this paper presents a formal description of the proposed components and functions and discusses how the framework can be implemented using a cloud-native approach, to address both functional and non-functional requirements. An experimental analysis of the framework scalability is also provided.info:eu-repo/semantics/publishedVersio

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Modern computing: Vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress

    Systemic Circular Economy Solutions for Fiber Reinforced Composites

    Get PDF
    This open access book provides an overview of the work undertaken within the FiberEUse project, which developed solutions enhancing the profitability of composite recycling and reuse in value-added products, with a cross-sectorial approach. Glass and carbon fiber reinforced polymers, or composites, are increasingly used as structural materials in many manufacturing sectors like transport, constructions and energy due to their better lightweight and corrosion resistance compared to metals. However, composite recycling is still a challenge since no significant added value in the recycling and reprocessing of composites is demonstrated. FiberEUse developed innovative solutions and business models towards sustainable Circular Economy solutions for post-use composite-made products. Three strategies are presented, namely mechanical recycling of short fibers, thermal recycling of long fibers and modular car parts design for sustainable disassembly and remanufacturing. The validation of the FiberEUse approach within eight industrial demonstrators shows the potentials towards new Circular Economy value-chains for composite materials

    Flashpoint: A Low-latency Serverless Platform for Deep Learning Inference Serving

    Get PDF
    Recent breakthroughs in Deep Learning (DL) have led to high demand for executing inferences in interactive services such as ChatGPT and GitHub Copilot. However, these interactive services require low-latency inferences, which can only be met with GPUs and result in exorbitant operating costs. For instance, ChatGPT reportedly requires millions of U.S. dollars in cloud GPUs to serve its 1+ million users. A potential solution to meet low-latency requirements with acceptable costs is to use serverless platforms. These platforms automatically scale resources to meet user demands. However, current serverless systems have long cold starts which worsen with larger DL models and lead to poor performance during bursts of requests. Meanwhile, the demand for larger and larger DL models make it more challenging to deliver an acceptable user experience cost-effectively. While current systems over-provision GPUs to address this issue, they incur high costs in idle resources which greatly reduces the benefit of using a serverless platform. In this thesis, we introduce Flashpoint, a GPU-based serverless platform that serves DL inferences with low latencies. Flashpoint achieves this by reducing cold start durations, especially for large DL models, making serverless computing feasible for latency-sensitive DL workloads. To reduce cold start durations, Flashpoint reduces download times by sourcing the DL model data from within the compute cluster rather than slow cloud storage. Additionally, Flashpoint minimizes in-cluster network congestion from redundant packet transfers of the same DL model to multiple machines with multicasting. Finally, Flashpoint also reduces cold start durations by automatically partitioning models and deploying them in parallel on multiple machines. The reduced cold start durations achieved by Flashpoint enable the platform to scale resource allocations elastically and complete requests with low latencies without over-provisioning expensive GPU resources. We perform large-scale data center simulations that were parameterized with measurements our prototype implementations. We evaluate the system using six state-of-the-art DL models ranging from 499 MB to 11 GB in size. We also measure the performance of the system in representative real-world traces from Twitter and Microsoft Azure. Our results in the full-scale simulations show that Flashpoint achieves an arithmetic mean of 93.51% shorter average cold start durations, leading to 75.42% and 66.90% respective reductions in average and 99th percentile end-to-end request latencies across the DL models with the same amount of resources. These results show that Flashpoint boosts the performance of serving DL inferences on a serverless platform without increasing costs

    Restoring and valuing global kelp forest ecosystems

    Full text link
    Kelp forests cover ~30% of the world’s coastline and are the largest biogenic marine habitat on earth. Across their distribution, kelp forests are essential for the healthy functioning of marine ecosystems and consequently underpin many of the benefits coastal societies receive from the ocean. Concurrently, rising sea temperatures, overgrazing by marine herbivores, sedimentation, and water pollution have caused kelp forests populations to decline in most regions across the world. Effectively managing the response to these declines will be pivotal to maintaining healthy marine ecosystems and ensuring the benefits they provide are equitably distributed to coastal societies. In Chapter 1, I review how the marine management paradigm has shifted from protection to restoration as well as the consequences of this shift. Chapter 2 introduces the field of kelp forest restoration and provides a quantitative and qualitative review of 300 years of kelp forest restoration, exploring the genesis of restoration efforts, the lessons we have learned about restoration, and how we can develop the field for the future. Chapter 3 is a direct answer to the question faced while completing Chapter 2. This chapter details the need for a standardized marine restoration reporting framework, the benefits that it would provide, the challenges presented by creating one, and the solutions to these problems. Similarly, Chapter 4 is a response to the gaps discovered in Chapter 2. Chapter 4 explores how we can use naturally occurring positive species interactions and synergies with human activities to not only increase the benefits from ecosystem restoration but increase the probability that restoration is successful. The decision to restore an ecosystem or not is informed by the values and priorities of the society living in or managing that ecosystem. Chapter 5 quantifies the fisheries production, nutrient cycling, and carbon sequestration potential of five key genera of globally distributed kelp forests. I conclude the thesis by reviewing the lessons learned and the steps required to advance the field kelp forest restoration and conservation

    Investigating the Effects of Network Dynamics on Quality of Delivery Prediction and Monitoring for Video Delivery Networks

    Get PDF
    Video streaming over the Internet requires an optimized delivery system given the advances in network architecture, for example, Software Defined Networks. Machine Learning (ML) models have been deployed in an attempt to predict the quality of the video streams. Some of these efforts have considered the prediction of Quality of Delivery (QoD) metrics of the video stream in an effort to measure the quality of the video stream from the network perspective. In most cases, these models have either treated the ML algorithms as black-boxes or failed to capture the network dynamics of the associated video streams. This PhD investigates the effects of network dynamics in QoD prediction using ML techniques. The hypothesis that this thesis investigates is that ML techniques that model the underlying network dynamics achieve accurate QoD and video quality predictions and measurements. The thesis results demonstrate that the proposed techniques offer performance gains over approaches that fail to consider network dynamics. This thesis results highlight that adopting the correct model by modelling the dynamics of the network infrastructure is crucial to the accuracy of the ML predictions. These results are significant as they demonstrate that improved performance is achieved at no additional computational or storage cost. These techniques can help the network manager, data center operatives and video service providers take proactive and corrective actions for improved network efficiency and effectiveness
    • …
    corecore