48 research outputs found

    A multi-strategy methodology for ontology integration and reuse. Integrating large and heterogeneous knowledge bases in the rise of Big Data

    Get PDF
    The new revolutionary web today, i.e., the Semantic Web, has augmented the previous one by promoting common data formats and exchange protocols in order to provide a framework that allows data to be shared and reused across application, enterprise, and community boundaries. This revolution, along with the increasing digitization of the world, has led to a high availability of knowledge models, viz., formal representations of concepts and relations between concepts underlying a certain universe of discourse or knowledge domain, which span throughout a wide range of topics, fields of study and applications, from biomedical to advanced manufacturing, mostly heterogeneous from each other at a different levels. As more and more outbreaks of this new revolution light up, a major challenge came soon into sight: addressing the main objectives of the semantic web, the sharing and reuse of data, demands effective and efficient methodologies to mediate between models characterized by such a heterogeneity. Since ontologies are the de facto standard in representing and sharing knowledge models over the web, this doctoral thesis presents a comprehensive methodology to ontology integration and reuse based on various matching techniques. The proposed approach is supported by an ad hoc software framework whose scope is easing the creation of new ontologies by promoting the reuse of existing ones and automatizing, as much as possible, the whole ontology construction procedure

    Intelligent Information Access to Linked Data - Weaving the Cultural Heritage Web

    Get PDF
    The subject of the dissertation is an information alignment experiment of two cultural heritage information systems (ALAP): The Perseus Digital Library and Arachne. In modern societies, information integration is gaining importance for many tasks such as business decision making or even catastrophe management. It is beyond doubt that the information available in digital form can offer users new ways of interaction. Also, in the humanities and cultural heritage communities, more and more information is being published online. But in many situations the way that information has been made publicly available is disruptive to the research process due to its heterogeneity and distribution. Therefore integrated information will be a key factor to pursue successful research, and the need for information alignment is widely recognized. ALAP is an attempt to integrate information from Perseus and Arachne, not only on a schema level, but to also perform entity resolution. To that end, technical peculiarities and philosophical implications of the concepts of identity and co-reference are discussed. Multiple approaches to information integration and entity resolution are discussed and evaluated. The methodology that is used to implement ALAP is mainly rooted in the fields of information retrieval and knowledge discovery. First, an exploratory analysis was performed on both information systems to get a first impression of the data. After that, (semi-)structured information from both systems was extracted and normalized. Then, a clustering algorithm was used to reduce the number of needed entity comparisons. Finally, a thorough matching was performed on the different clusters. ALAP helped with identifying challenges and highlighted the opportunities that arise during the attempt to align cultural heritage information systems

    Semantic Systems. The Power of AI and Knowledge Graphs

    Get PDF
    This open access book constitutes the refereed proceedings of the 15th International Conference on Semantic Systems, SEMANTiCS 2019, held in Karlsruhe, Germany, in September 2019. The 20 full papers and 8 short papers presented in this volume were carefully reviewed and selected from 88 submissions. They cover topics such as: web semantics and linked (open) data; machine learning and deep learning techniques; semantic information management and knowledge integration; terminology, thesaurus and ontology management; data mining and knowledge discovery; semantics in blockchain and distributed ledger technologies

    OM-2017: Proceedings of the Twelfth International Workshop on Ontology Matching

    Get PDF
    shvaiko2017aInternational audienceOntology matching is a key interoperability enabler for the semantic web, as well as auseful tactic in some classical data integration tasks dealing with the semantic heterogeneityproblem. It takes ontologies as input and determines as output an alignment,that is, a set of correspondences between the semantically related entities of those ontologies.These correspondences can be used for various tasks, such as ontology merging,data translation, query answering or navigation on the web of data. Thus, matchingontologies enables the knowledge and data expressed with the matched ontologies tointeroperate

    Ontology mapping with auxiliary resources

    Get PDF

    Methods for Matching of Linked Open Social Science Data

    Get PDF
    In recent years, the concept of Linked Open Data (LOD), has gained popularity and acceptance across various communities and domains. Science politics and organizations claim that the potential of semantic technologies and data exposed in this manner may support and enhance research processes and infrastructures providing research information and services. In this thesis, we investigate whether these expectations can be met in the domain of the social sciences. In particular, we analyse and develop methods for matching social scientific data that is published as Linked Data, which we introduce as Linked Open Social Science Data. Based on expert interviews and a prototype application, we investigate the current consumption of LOD in the social sciences and its requirements. Following these insights, we first focus on the complete publication of Linked Open Social Science Data by extending and developing domain-specific ontologies for representing research communities, research data and thesauri. In the second part, methods for matching Linked Open Social Science Data are developed that address particular patterns and characteristics of the data typically used in social research. The results of this work contribute towards enabling a meaningful application of Linked Data in a scientific domain

    Factors affecting the effectiveness of biomedical document indexing and retrieval based on terminologies

    Get PDF
    International audienceThe aim of this work is to evaluate a set of indexing and retrieval strategies based on the integration of several biomedical terminologies on the available TREC Genomics collections for an ad hoc information retrieval (IR) task.Materials and methodsWe propose a multi-terminology based concept extraction approach to selecting best concepts from free text by means of voting techniques. We instantiate this general approach on four terminologies (MeSH, SNOMED, ICD-10 and GO). We particularly focus on the effect of integrating terminologies into a biomedical IR process, and the utility of using voting techniques for combining the extracted concepts from each document in order to provide a list of unique concepts.ResultsExperimental studies conducted on the TREC Genomics collections show that our multi-terminology IR approach based on voting techniques are statistically significant compared to the baseline. For example, tested on the 2005 TREC Genomics collection, our multi-terminology based IR approach provides an improvement rate of +6.98% in terms of MAP (mean average precision) (p < 0.05) compared to the baseline. In addition, our experimental results show that document expansion using preferred terms in combination with query expansion using terms from top ranked expanded documents improve the biomedical IR effectiveness.ConclusionWe have evaluated several voting models for combining concepts issued from multiple terminologies. Through this study, we presented many factors affecting the effectiveness of biomedical IR system including term weighting, query expansion, and document expansion models. The appropriate combination of those factors could be useful to improve the IR performance
    corecore