5,537 research outputs found

    Techniques for noise removal from EEG, EOG and air flow signals in sleep patients

    Full text link
    Noise is present in the wide variety of signals obtained from sleep patients. This noise comes from a number of sources, from presence of extraneous signals to adjustments in signal amplification and shot noise in the circuits used for data collection. The noise needs to be removed in order to maximize the information gained about the patient using both manual and automatic analysis of the signals. Here we evaluate a number of new techniques for removal of that noise, and the associated problem of separating the original signal sources.Comment: 9 pages, 3 figure

    Surface mechanomyography and electromyography provide non-invasive indices of inspiratory muscle force and activation in healthy subjects

    Get PDF
    The current gold standard assessment of human inspiratory muscle function involves using invasive measures of transdiaphragmatic pressure (Pdi) or crural diaphragm electromyography (oesEMGdi). Mechanomyography is a non-invasive measure of muscle vibration associated with muscle contraction. Surface electromyogram and mechanomyogram, recorded transcutaneously using sensors placed over the lower intercostal spaces (sEMGlic and sMMGlic respectively), have been proposed to provide non-invasive indices of inspiratory muscle activation, but have not been directly compared to gold standard Pdi and oesEMGdi measures during voluntary respiratory manoeuvres. To validate the non-invasive techniques, the relationships between Pdi and sMMGlic, and between oesEMGdi and sEMGlic were measured simultaneously in 12 healthy subjects during an incremental inspiratory threshold loading protocol. Myographic signals were analysed using fixed sample entropy (fSampEn), which is less influenced by cardiac artefacts than conventional root mean square. Strong correlations were observed between: mean Pdi and mean fSampEn |sMMGlic| (left, 0.76; right, 0.81), the time-integrals of the Pdi and fSampEn |sMMGlic| (left, 0.78; right, 0.83), and mean fSampEn oesEMGdi and mean fSampEn sEMGlic (left, 0.84; right, 0.83). These findings suggest that sMMGlic and sEMGlic could provide useful non-invasive alternatives to Pdi and oesEMGdi for the assessment of inspiratory muscle function in health and disease.Peer ReviewedPostprint (published version

    Development of a Novel Dataset and Tools for Non-Invasive Fetal Electrocardiography Research

    Get PDF
    This PhD thesis presents the development of a novel open multi-modal dataset for advanced studies on fetal cardiological assessment, along with a set of signal processing tools for its exploitation. The Non-Invasive Fetal Electrocardiography (ECG) Analysis (NInFEA) dataset features multi-channel electrophysiological recordings characterized by high sampling frequency and digital resolution, maternal respiration signal, synchronized fetal trans-abdominal pulsed-wave Doppler (PWD) recordings and clinical annotations provided by expert clinicians at the time of the signal collection. To the best of our knowledge, there are no similar dataset available. The signal processing tools targeted both the PWD and the non-invasive fetal ECG, exploiting the recorded dataset. About the former, the study focuses on the processing aimed at the preparation of the signal for the automatic measurement of relevant morphological features, already adopted in the clinical practice for cardiac assessment. To this aim, a relevant step is the automatic identification of the complete and measurable cardiac cycles in the PWD videos: a rigorous methodology was deployed for the analysis of the different processing steps involved in the automatic delineation of the PWD envelope, then implementing different approaches for the supervised classification of the cardiac cycles, discriminating between complete and measurable vs. malformed or incomplete ones. Finally, preliminary measurement algorithms were also developed in order to extract clinically relevant parameters from the PWD. About the fetal ECG, this thesis concentrated on the systematic analysis of the adaptive filters performance for non-invasive fetal ECG extraction processing, identified as the reference tool throughout the thesis. Then, two studies are reported: one on the wavelet-based denoising of the extracted fetal ECG and another one on the fetal ECG quality assessment from the analysis of the raw abdominal recordings. Overall, the thesis represents an important milestone in the field, by promoting the open-data approach and introducing automated analysis tools that could be easily integrated in future medical devices

    IGRT and motion management during lung SBRT delivery.

    Get PDF
    Patient motion can cause misalignment of the tumour and toxicities to the healthy lung tissue during lung stereotactic body radiation therapy (SBRT). Any deviations from the reference setup can miss the target and have acute toxic effects on the patient with consequences onto its quality of life and survival outcomes. Correction for motion, either immediately prior to treatment or intra-treatment, can be realized with image-guided radiation therapy (IGRT) and motion management devices. The use of these techniques has demonstrated the feasibility of integrating complex technology with clinical linear accelerator to provide a higher standard of care for the patients and increase their quality of life

    Human Respiration Rate Measurement with High-Speed Digital Fringe Projection Technique

    Get PDF
    This paper proposes a non-contact continuous respiration monitoring method based on Fringe Projection Profilometry (FPP). This method aims to overcome the limitations of traditional intrusive techniques by providing continuous monitoring without interfering with normal breathing. The FPP sensor captures three-dimensional (3D) respiratory motion from the chest wall and abdomen, and the analysis algorithms extract respiratory parameters. The system achieved a high Signal-to-Noise Ratio (SNR) of 37 dB with an ideal sinusoidal respiration signal. Experimental results demonstrated that a mean correlation of 0.95 and a mean Root-Mean-Square Error (RMSE) of 0.11 breaths per minute (bpm) were achieved when comparing to a reference signal obtained from a spirometer

    Fetal electrocardiograms, direct and abdominal with reference heartbeat annotations

    Get PDF
    Monitoring fetal heart rate (FHR) variability plays a fundamental role in fetal state assessment. Reliable FHR signal can be obtained from an invasive direct fetal electrocardiogram (FECG), but this is limited to labour. Alternative abdominal (indirect) FECG signals can be recorded during pregnancy and labour. Quality, however, is much lower and the maternal heart and uterine contractions provide sources of interference. Here, we present ten twenty-minute pregnancy signals and 12 five-minute labour signals. Abdominal FECG and reference direct FECG were recorded simultaneously during labour. Reference pregnancy signal data came from an automated detector and were corrected by clinical experts. The resulting dataset exhibits a large variety of interferences and clinically significant FHR patterns. We thus provide the scientific community with access to bioelectrical fetal heart activity signals that may enable the development of new methods for FECG signals analysis, and may ultimately advance the use and accuracy of abdominal electrocardiography methods.Web of Science71art. no. 20

    A Morphological Approach To Identify Respiratory Phases Of Seismocardiogram

    Get PDF
    Respiration affects the cardiovascular system significantly and the morphology of signals relevant to the heart changes with respiration. Such changes have been used to extract respiration signal from electrocardiogram (ECG). It is also shown that accelerometers placed on the body can be used to extract respiration signals. It has been demonstrated that the signal morphology for seismocardiogram, the lower frequency band of chest accelerations, is different between inhale and exhale. For instance, systolic time intervals (STI), which provide a quantitative estimation of left ventricular performance, vary between inhale and exhale phases. In other words, heart beats happening in exhale phase are different compared to those in inhale phase. Thus, our main goal in this thesis is investigating feasibility of finding an automatic morphological based method to identify respiratory phases of heart cycles. In this thesis, forty signal recordings from twenty subjects were used. In each recording, the reference respiratory belt signal, three dimensional (3D) chest acceleration signals, and electrocardiogram signals were recorded. The first stage was is choosing a proper estimated respiratory signal. The second stage, was the automatic respiratory phase detection of heart cycles using the selected estimated respiratory signal. The result shows that among estimated respiratory signals, accelerometer-derived respiration (ADR), in z-direction, has a potential m to identify respiratory phase of heart cycles with total accuracy of about 77%

    Detection and Processing Techniques of FECG Signal for Fetal Monitoring

    Get PDF
    Fetal electrocardiogram (FECG) signal contains potentially precise information that could assist clinicians in making more appropriate and timely decisions during labor. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies are becoming very important requirements in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and developed algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature for fetal monitoring. A comparative study has been carried out to show the performance and accuracy of various methods of FECG signal analysis for fetal monitoring. Finally, this paper further focused some of the hardware implementations using electrical signals for monitoring the fetal heart rate. This paper opens up a passage for researchers, physicians, and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system

    The feasibility of the Emfit movement sensor as an automated screening tool for sleep apnea in the ischemic stroke patients

    Get PDF
    Stroke is a common cause of death and a major reason for disability. Stroke survivors can have very difficult symptoms and require very intensive and expensive rehabilitation. Sleep disordered breathing, sleep apnea, is common among stroke patients, it's a high risk factor for recurrent stroke and untreated sleep apnea has a negative influence on the stroke recovery. All stroke patients are recommended to be measured for sleep apnea, but the lack of resources don't allow it. Therefore there is a need for a screening tool to find the stroke patients who need the measurement most and who benefit the most of the treatment of the sleep apnea. We studied the possibility to use the Emfit movement sensor combined with a pulse oximeter as a screening tool. The Emfit movement sensor doesn't have connections to the patient, therefore it wouldn't require lots of resources to set up the measurement and there are no contacts that can cause interference during the measurement. The automatic scoring of the measurement would remove the need for an expert to manually score every measurement. The test subjects were measured at the same night using both the Emfit movement sensor and a conventional respiratory polygraphy device. The Emfit movement sensor and the standard respiratory polygraphy measurements were scored using Noxturnal's automatic analysis tool and the results were compared. The results were also compared to the manual scoring of the standard respiratory polygraphy. The Emfit movement sensor measurement slightly overestimates the apnea hypopnea index, as does the automatically scored standard respiratory polygraphy too. The automatic analysis ability to detect correctly the duration and timing of a respiratory event in the Emfit movement sensor measurement seems to depend on the amount of noise in the measurement. Our study indicates that the Emfit movement sensor has potential to be used as a screening tool for sleep apnea in the ischemic stroke patients, but the automatic analysis still needs improvements to provide more accurate results
    corecore