5,012 research outputs found

    Verslo procesų prognozavimo ir imitavimo taikant sisteminių įvykių žurnalų analizės metodus tyrimas

    Get PDF
    Business process (BP) analysis is one of the core activities in organisations that lead to improvements and achievement of a competitive edge. BP modelling and simulation are one of the most widely applied methods for analysing and improving BPs. The analysis requires to model BP and to apply analysis techniques to the models to answer queries leading to improvements. The input of the analysis process is BP models. The models can be in the form of BP models using industry-accepted BP modelling languages, mathematical models, simulation models and others. The model creation is the most important part of the BP analysis, and it is both time-consuming and costly activity. Nowadays most of the data generated in the organisations are electronic. Therefore, the re-use of such data can improve the results of the analysis. Thus, the main goal of the thesis is to improve BP analysis and simulation by proposing a method to discover a BP model from an event log and automate simulation model generation. The dissertation consists of an introduction, three main chapters and general conclusions. The first chapter discusses BP analysis methods. In addition, the process mining research area is presented, the techniques for automated model discovery, model validation and execution prediction are analysed. The second part of the chapter investigates the area of BP simula-tion. The second chapter of the dissertation presents a novel method which automatically discovers Bayesian Belief Network from an event log and, furthermore, automatically generates BP simulation model. The discovery of the Bayesian Belief Network consists of three steps: the discovery of a directed acyclic graph, generation of conditional probability tables and their combination. The BP simulation model is generated from the discovered directed acyclic graph and uses the belief network inferences during the simulation to infer the execution of the BP and to generate activity data dur-ing the simulation. The third chapter presents the experimental research of the proposed network and discusses the validity of the research and experiments. The experiments use selected logs that exhibit a wide array of behaviour. The experiments are performed in order to test the discovery of the graphs, the inference of the current process instance execution probability, the predic-tion of the future execution of the process instances and the correctness of the simulation. The results of the dissertation were published in 9 scientific publica-tions, 2 of which were in reviewed scientific journals indexed in Clarivate Analytics Science Citation Index

    Integrating computer log files for process mining: a genetic algorithm inspired technique

    Get PDF
    Process mining techniques are applied to single computer log files. But many processes are supported by different software tools and are by consequence recorded into multiple log files. Therefore it would be interesting to find a way to automatically combine such a set of log files for one process. In this paper we describe a technique for merging log files based on a genetic algorithm. We show with a generated test case that this technique works and we give an extended overview of which research is needed to optimise and validate this technique

    Discovering business process simulation models in the presence of multitasking and availability constraints

    Get PDF
    Business process simulation is a versatile technique for quantitative analysis of business processes. A well-known limitation of process simulation is that the accuracy of the simulation results is limited by the faithfulness of the process model and simulation parameters given as input to the simulator. To tackle this limitation, various authors have proposed to discover simulation models from process execution logs, so that the resulting simulation models more closely match reality. However, existing techniques in this field make certain assumptions about resource behavior that do not typically hold in practice, including: (i) that each resource performs one task at a time; and (ii) that resources are continuously available (24/7). In reality, resources may engage in multitasking behavior and they work only during certain periods of the day or the week. This article proposes an approach to discover process simulation models from execution logs in the presence of multitasking and availability constraints. To account for multitasking, we adjust the processing times of tasks in such a way that executing the multitasked tasks sequentially with the adjusted times is equivalent to executing them concurrently with the original times. Meanwhile, to account for availability constraints, we use an algorithm for discovering calendar expressions from collections of time-points to infer resource timetables from an execution log. We then adjust the parameters of this algorithm to maximize the similarity between the simulated log and the original one. We evaluate the approach using real-life and synthetic datasets. The results show that the approach improves the accuracy of simulation models discovered from execution logs both in the presence of multitasking and availability constraintsEuropean Research Council PIX 834141Ministerio de Ciencia, Innovación y Universidades OPHELIA RTI2018-101204-B-C22Junta de Andalucía EKIPMENTPLUS (P18–FR–2895
    corecore