40 research outputs found

    Recent Developments in Detection of Central Serous Retinopathy through Imaging and Artificial Intelligence Techniques – A Review

    Get PDF
    Central Serous Retinopathy (CSR) or Central Serous Chorioretinopathy (CSC) is a significant disease that causes blindness and vision loss among millions of people worldwide. It transpires as a result of accumulation of watery fluids behind the retina. Therefore, detection of CSR at early stages allows preventive measures to avert any impairment to the human eye. Traditionally, several manual methods for detecting CSR have been developed in the past; however, they have shown to be imprecise and unreliable. Consequently, Artificial Intelligence (AI) services in the medical field, including automated CSR detection, are now possible to detect and cure this disease. This review assessed a variety of innovative technologies and researches that contribute to the automatic detection of CSR. In this review, various CSR disease detection techniques, broadly classified into two categories: a) CSR detection based on classical imaging technologies, and b) CSR detection based on Machine/Deep Learning methods, have been reviewed after an elaborated evaluation of 29 different relevant articles. Additionally, it also goes over the advantages, drawbacks and limitations of a variety of traditional imaging techniques, such as Optical Coherence Tomography Angiography (OCTA), Fundus Imaging and more recent approaches that utilize Artificial Intelligence techniques. Finally, it is concluded that the most recent Deep Learning (DL) classifiers deliver accurate, fast, and reliable CSR detection. However, more research needs to be conducted on publicly available datasets to improve computation complexity for the reliable detection and diagnosis of CSR disease

    CAD system for early diagnosis of diabetic retinopathy based on 3D extracted imaging markers.

    Get PDF
    This dissertation makes significant contributions to the field of ophthalmology, addressing the segmentation of retinal layers and the diagnosis of diabetic retinopathy (DR). The first contribution is a novel 3D segmentation approach that leverages the patientspecific anatomy of retinal layers. This approach demonstrates superior accuracy in segmenting all retinal layers from a 3D retinal image compared to current state-of-the-art methods. It also offers enhanced speed, enabling potential clinical applications. The proposed segmentation approach holds great potential for supporting surgical planning and guidance in retinal procedures such as retinal detachment repair or macular hole closure. Surgeons can benefit from the accurate delineation of retinal layers, enabling better understanding of the anatomical structure and more effective surgical interventions. Moreover, real-time guidance systems can be developed to assist surgeons during procedures, improving overall patient outcomes. The second contribution of this dissertation is the introduction of a novel computeraided diagnosis (CAD) system for precise identification of diabetic retinopathy. The CAD system utilizes 3D-OCT imaging and employs an innovative approach that extracts two distinct features: first-order reflectivity and 3D thickness. These features are then fused and used to train and test a neural network classifier. The proposed CAD system exhibits promising results, surpassing other machine learning and deep learning algorithms commonly employed in DR detection. This demonstrates the effectiveness of the comprehensive analysis approach employed by the CAD system, which considers both low-level and high-level data from the 3D retinal layers. The CAD system presents a groundbreaking contribution to the field, as it goes beyond conventional methods, optimizing backpropagated neural networks to integrate multiple levels of information effectively. By achieving superior performance, the proposed CAD system showcases its potential in accurately diagnosing DR and aiding in the prevention of vision loss. In conclusion, this dissertation presents novel approaches for the segmentation of retinal layers and the diagnosis of diabetic retinopathy. The proposed methods exhibit significant improvements in accuracy, speed, and performance compared to existing techniques, opening new avenues for clinical applications and advancements in the field of ophthalmology. By addressing future research directions, such as testing on larger datasets, exploring alternative algorithms, and incorporating user feedback, the proposed methods can be further refined and developed into robust, accurate, and clinically valuable tools for diagnosing and monitoring retinal diseases

    Automatic Choroid Layer Segmentation from Optical Coherence Tomography Images Using Deep Learning

    Get PDF
    The choroid layer is a vascular layer in human retina and its main function is to provide oxygen and support to the retina. Various studies have shown that the thickness of the choroid layer is correlated with the diagnosis of several ophthalmic diseases. For example, diabetic macular edema (DME) is a leading cause of vision loss in patients with diabetes. Despite contemporary advances, automatic segmentation of the choroid layer remains a challenging task due to low contrast, inhomogeneous intensity, inconsistent texture and ambiguous boundaries between the choroid and sclera in Optical Coherence Tomography (OCT) images. The majority of currently implemented methods manually or semi-automatically segment out the region of interest. While many fully automatic methods exist in the context of choroid layer segmentation, more effective and accurate automatic methods are required in order to employ these methods in the clinical sector. This paper proposed and implemented an automatic method for choroid layer segmentation in OCT images using deep learning and a series of morphological operations. The aim of this research was to segment out Bruch’s Membrane (BM) and choroid layer to calculate the thickness map. BM was segmented using a series of morphological operations, whereas the choroid layer was segmented using a deep learning approach as more image statistics were required to segment accurately. Several evaluation metrics were used to test and compare the proposed method against other existing methodologies. Experimental results showed that the proposed method greatly reduced the error rate when compared with the other state-of-the art methods

    Deep learning analysis of eye fundus images to support medical diagnosis

    Get PDF
    Machine learning techniques have been successfully applied to support medical decision making of cancer, heart diseases and degenerative diseases of the brain. In particular, deep learning methods have been used for early detection of abnormalities in the eye that could improve the diagnosis of different ocular diseases, especially in developing countries, where there are major limitations to access to specialized medical treatment. However, the early detection of clinical signs such as blood vessel, optic disc alterations, exudates, hemorrhages, drusen, and microaneurysms presents three main challenges: the ocular images can be affected by noise artifact, the features of the clinical signs depend specifically on the acquisition source, and the combination of local signs and grading disease label is not an easy task. This research approaches the problem of combining local signs and global labels of different acquisition sources of medical information as a valuable tool to support medical decision making in ocular diseases. Different models for different eye diseases were developed. Four models were developed using eye fundus images: for DME, it was designed a two-stages model that uses a shallow model to predict an exudate binary mask. Then, the binary mask is stacked with the raw fundus image into a 4-channel array as an input of a deep convolutional neural network for diabetic macular edema diagnosis; for glaucoma, it was developed three deep learning models. First, it was defined a deep learning model based on three-stages that contains an initial stage for automatically segment two binary masks containing optic disc and physiological cup segmentation, followed by an automatic morphometric features extraction stage from previous segmentations, and a final classification stage that supports the glaucoma diagnosis with intermediate medical information. Two late-data-fusion methods that fused morphometric features from cartesian and polar segmentation of the optic disc and physiological cup with features extracted from raw eye fundus images. On the other hand, two models were defined using optical coherence tomography. First, a customized convolutional neural network termed as OCT-NET to extract features from OCT volumes to classify DME, DR-DME and AMD conditions. In addition, this model generates images with highlighted local information about the clinical signs, and it estimates the number of slides inside a volume with local abnormalities. Finally, a 3D-Deep learning model that uses OCT volumes as an input to estimate the retinal thickness map useful to grade AMD. The methods were systematically evaluated using ten free public datasets. The methods were compared and validated against other state-of-the-art algorithms and the results were also qualitatively evaluated by ophthalmology experts from Fundación Oftalmológica Nacional. In addition, the proposed methods were tested as a diagnosis support tool of diabetic macular edema, glaucoma, diabetic retinopathy and age-related macular degeneration using two different ocular imaging representations. Thus, we consider that this research could be potentially a big step in building telemedicine tools that could support medical personnel for detecting ocular diseases using eye fundus images and optical coherence tomography.Las técnicas de aprendizaje automático se han aplicado con éxito para apoyar la toma de decisiones médicas sobre el cáncer, las enfermedades cardíacas y las enfermedades degenerativas del cerebro. En particular, se han utilizado métodos de aprendizaje profundo para la detección temprana de anormalidades en el ojo que podrían mejorar el diagnóstico de diferentes enfermedades oculares, especialmente en países en desarrollo, donde existen grandes limitaciones para acceder a tratamiento médico especializado. Sin embargo, la detección temprana de signos clínicos como vasos sanguíneos, alteraciones del disco óptico, exudados, hemorragias, drusas y microaneurismas presenta tres desafíos principales: las imágenes oculares pueden verse afectadas por artefactos de ruido, las características de los signos clínicos dependen específicamente de fuente de adquisición, y la combinación de signos locales y clasificación de la enfermedad no es una tarea fácil. Esta investigación aborda el problema de combinar signos locales y etiquetas globales de diferentes fuentes de adquisición de información médica como una herramienta valiosa para apoyar la toma de decisiones médicas en enfermedades oculares. Se desarrollaron diferentes modelos para diferentes enfermedades oculares. Se desarrollaron cuatro modelos utilizando imágenes de fondo de ojo: para DME, se diseñó un modelo de dos etapas que utiliza un modelo superficial para predecir una máscara binaria de exudados. Luego, la máscara binaria se apila con la imagen de fondo de ojo original en una matriz de 4 canales como entrada de una red neuronal convolucional profunda para el diagnóstico de edema macular diabético; para el glaucoma, se desarrollaron tres modelos de aprendizaje profundo. Primero, se definió un modelo de aprendizaje profundo basado en tres etapas que contiene una etapa inicial para segmentar automáticamente dos máscaras binarias que contienen disco óptico y segmentación fisiológica de la copa, seguido de una etapa de extracción de características morfométricas automáticas de segmentaciones anteriores y una etapa de clasificación final que respalda el diagnóstico de glaucoma con información médica intermedia. Dos métodos de fusión de datos tardíos que fusionaron características morfométricas de la segmentación cartesiana y polar del disco óptico y la copa fisiológica con características extraídas de imágenes de fondo de ojo crudo. Por otro lado, se definieron dos modelos mediante tomografía de coherencia óptica. Primero, una red neuronal convolucional personalizada denominada OCT-NET para extraer características de los volúmenes OCT para clasificar las condiciones DME, DR-DME y AMD. Además, este modelo genera imágenes con información local resaltada sobre los signos clínicos, y estima el número de diapositivas dentro de un volumen con anomalías locales. Finalmente, un modelo de aprendizaje 3D-Deep que utiliza volúmenes OCT como entrada para estimar el mapa de espesor retiniano útil para calificar AMD. Los métodos se evaluaron sistemáticamente utilizando diez conjuntos de datos públicos gratuitos. Los métodos se compararon y validaron con otros algoritmos de vanguardia y los resultados también fueron evaluados cualitativamente por expertos en oftalmología de la Fundación Oftalmológica Nacional. Además, los métodos propuestos se probaron como una herramienta de diagnóstico de edema macular diabético, glaucoma, retinopatía diabética y degeneración macular relacionada con la edad utilizando dos representaciones de imágenes oculares diferentes. Por lo tanto, consideramos que esta investigación podría ser potencialmente un gran paso en la construcción de herramientas de telemedicina que podrían ayudar al personal médico a detectar enfermedades oculares utilizando imágenes de fondo de ojo y tomografía de coherencia óptica.Doctorad

    Graph Theory and Dynamic Programming Framework for Automated Segmentation of Ophthalmic Imaging Biomarkers

    Get PDF
    <p>Accurate quantification of anatomical and pathological structures in the eye is crucial for the study and diagnosis of potentially blinding diseases. Earlier and faster detection of ophthalmic imaging biomarkers also leads to optimal treatment and improved vision recovery. While modern optical imaging technologies such as optical coherence tomography (OCT) and adaptive optics (AO) have facilitated in vivo visualization of the eye at the cellular scale, the massive influx of data generated by these systems is often too large to be fully analyzed by ophthalmic experts without extensive time or resources. Furthermore, manual evaluation of images is inherently subjective and prone to human error.</p><p>This dissertation describes the development and validation of a framework called graph theory and dynamic programming (GTDP) to automatically detect and quantify ophthalmic imaging biomarkers. The GTDP framework was validated as an accurate technique for segmenting retinal layers on OCT images. The framework was then extended through the development of the quasi-polar transform to segment closed-contour structures including photoreceptors on AO scanning laser ophthalmoscopy images and retinal pigment epithelial cells on confocal microscopy images. </p><p>The GTDP framework was next applied in a clinical setting with pathologic images that are often lower in quality. Algorithms were developed to delineate morphological structures on OCT indicative of diseases such as age-related macular degeneration (AMD) and diabetic macular edema (DME). The AMD algorithm was shown to be robust to poor image quality and was capable of segmenting both drusen and geographic atrophy. To account for the complex manifestations of DME, a novel kernel regression-based classification framework was developed to identify retinal layers and fluid-filled regions as a guide for GTDP segmentation.</p><p>The development of fast and accurate segmentation algorithms based on the GTDP framework has significantly reduced the time and resources necessary to conduct large-scale, multi-center clinical trials. This is one step closer towards the long-term goal of improving vision outcomes for ocular disease patients through personalized therapy.</p>Dissertatio

    Разработка алгоритмов формирования карты коагулятов на изображении глазного дна для проведения лазерной коагуляции

    Get PDF
    Главным инструментом терапии глазного дна является лазерная коагуляция, в ходе которой происходит нанесение серии дозированных микроожогов – лазерокоагулятов, в зоне отёка на сетчатке. Существующие в настоящее время программные пакеты ориентированы в первую очередь на использование заданного шаблона (паттерна) для расстановки коагулятов. Следствием применения шаблонов становится неравномерность расстановки коагулятов по причине высокой вариабельности форм отёка и сосудистого русла. Представлены алгоритмы расчёта карты коагулятов в рамках решения задачи плотной упаковки шаров в произвольную область и результаты исследования разработанных алгоритмов.Работа выполнена при частичной поддержке Министерства образования и науки РФ в рамках реализации мероприятий Программы повышения конкурентоспособности СГАУ среди ведущих мировых научно-образовательных центров на 2013–2020 годы; грантов РФФИ № 14-07-97040, № 15-29-03823, № 15-29- 07077, № 16-57-48006, № 16-41630761; программы № 6 фундаментальных исследований ОНИТ РАН «Биоинформатика, современные информационные технологии и математические методы в медицине» 2016-2017 гг

    Age-related macular degeneration: interventional tissue engineering and predictive modeling of disease progression

    Full text link
    Thesis (Ph.D.)--Boston UniversityAge-related macular degeneration (AMD) is the leading cause of irreversible blindness in people over the age of 50. As many as 50 million people are affected by AMD worldwide and prevalence is expected to continue to rise due to an aging population. There are two forms of the disease, dry (geographic atrophy) and wet (choroidal neovascularization), both of which result in retinal degeneration and central vision loss. Although anti-vascular endothelial growth factor therapies are moderately successful at treating the wet form, there are no treatments currently available for the more common dry form. Pharmacological therapies have been extensively explored for the treatment of dry AMD, but have achieved little success because the pathogenesis underlying AMD is unknown and likely varies among patients . Recently, tissue engineering has emerged as a promising approach to restore function by replacing diseased retinal tissue with healthy retinal pigment epithelium (RPE). While AMD-associated vision loss occurs when photoreceptors degenerate, this process arises as a consequence of earlier RPE dysfunction. In the healthy retina, the RPE acts as a critical regulator of the microenvironment for both photoreceptors and the nearby vasculature. However in AMD, the RPE no longer performs these essential homeostatic functions leading to photoreceptor apoptosis and vision loss. This dissertation describes the development and in vitro characterization of a tissue engineering scaffold for RPE delivery as potential treatment for dry AMD. First, a novel microfabrication-based method termed "pore casting" was developed to produce thin scaffolds with highly controlled pore size, shape, and spacing. Next, human RPE were cultured on pore-cast poly(c-caprolactone) (PCL) scaffolds and compared to cells on track-etched polyester, the standard RPE culture substrate. RPE on porous PCL demonstrated enhanced maturation and function compared to track-etched polyester including improved pigmentation, barrier formation, gene expression, growth factor secretion, and phagocytic degradation. Lastly, this study established a patient-specific method for predicting AMD progression using retinal oxygen concentration. This approach differs from current diagnosis techniques because it uses physiologically-relevant mechanisms rather than generalized clinical associations which have little, if any, prognostic value

    Automating the eye examination using optical coherence tomography

    Get PDF
    Optical coherence tomography (OCT) devices are becoming ubiquitous in eye clinics worldwide to aid the diagnosis and monitoring of eye disease. Much of this uptake relates to the ability to non-invasively capture micron-resolution images, enabling objective and quantitative data to be obtained from ocular structures. Although safe and reasonably quick to perform, the costs involved with operating OCT devices are not trivial, and the requirement for OCT and other imaging in addition to other clinical measures is placing increasing demand on ophthalmology clinics, contributing to fragmented patient pathways and often extended waiting times. In this thesis, a novel “binocular optical coherence tomography” system that seeks to overcome some of the limitations of current commercial OCT systems, is clinically evaluated. This device incorporates many aspects of the eye examination into a single patient-operated instrument, and aims to improve the efficiency and quality of eye care while reducing the overall labour and equipment costs. A progressive framework of testing is followed that includes human factors and usability testing, followed by early stage diagnostic studies to assess the agreement, repeatability, and reproducibility of individual diagnostic features. Health economics analysis of the retinal therapy clinic is used to model cost effectiveness of current practice and with binocular OCT implementation. The binocular OCT and development of other low-cost OCT systems may improve accessibility, however there remains a relative shortage of experts to interpret the images. Artificial intelligence (AI) is likely to play a role in rapid and automated image classification. This thesis explores the application of AI within retinal therapy clinics to predict the onset of exudative age-related macular degeneration in fellow eyes of patients undergoing treatment in their first eye. Together with automated and simultaneous imaging of both eyes with binocular OCT and the potential for low-cost patient-facing systems, AI is likely to have a role in personalising management plans, especially in a future where preventive treatments are available
    corecore