1,002 research outputs found

    Survey on detecting and preventing web application broken access control attacks

    Get PDF
    Web applications are an essential component of the current wide range of digital services proposition including financial and governmental services as well as social networking and communications. Broken access control vulnerabilities pose a huge risk to that echo system because they allow the attacker to circumvent the allocated permissions and rights and perform actions that he is not authorized to perform. This paper gives a broad survey of the current research progress on approaches used to detect access control vulnerabilities exploitations and attacks in web application components. It categorizes these approaches based on their key techniques and compares the different detection methods in addition to evaluating their strengths and weaknesses. We also spotted and elaborated on some exciting research gaps found in the current literature, Finally, the paper summarizes the general detection approaches and suggests potential research directions for the future

    Next Generation Black-Box Web Application Vulnerability Analysis Framework

    Get PDF
    abstract: Web applications are an incredibly important aspect of our modern lives. Organizations and developers use automated vulnerability analysis tools, also known as scanners, to automatically find vulnerabilities in their web applications during development. Scanners have traditionally fallen into two types of approaches: black-box and white-box. In the black-box approaches, the scanner does not have access to the source code of the web application whereas a white-box approach has access to the source code. Today’s state-of-the-art black-box vulnerability scanners employ various methods to fuzz and detect vulnerabilities in a web application. However, these scanners attempt to fuzz the web application with a number of known payloads and to try to trigger a vulnerability. This technique is simple but does not understand the web application that it is testing. This thesis, presents a new approach to vulnerability analysis. The vulnerability analysis module presented uses a novel approach of Inductive Reverse Engineering (IRE) to understand and model the web application. IRE first attempts to understand the behavior of the web application by giving certain number of input/output pairs to the web application. Then, the IRE module hypothesizes a set of programs (in a limited language specific to web applications, called AWL) that satisfy the input/output pairs. These hypotheses takes the form of a directed acyclic graph (DAG). AWL vulnerability analysis module can then attempt to detect vulnerabilities in this DAG. Further, it generates the payload based on the DAG, and therefore this payload will be a precise payload to trigger the potential vulnerability (based on our understanding of the program). It then tests this potential vulnerability using the generated payload on the actual web application, and creates a verification procedure to see if the potential vulnerability is actually vulnerable, based on the web application’s response.Dissertation/ThesisMasters Thesis Computer Science 201

    The New South Wales iVote System: Security Failures and Verification Flaws in a Live Online Election

    Full text link
    In the world's largest-ever deployment of online voting, the iVote Internet voting system was trusted for the return of 280,000 ballots in the 2015 state election in New South Wales, Australia. During the election, we performed an independent security analysis of parts of the live iVote system and uncovered severe vulnerabilities that could be leveraged to manipulate votes, violate ballot privacy, and subvert the verification mechanism. These vulnerabilities do not seem to have been detected by the election authorities before we disclosed them, despite a pre-election security review and despite the system having run in a live state election for five days. One vulnerability, the result of including analytics software from an insecure external server, exposed some votes to complete compromise of privacy and integrity. At least one parliamentary seat was decided by a margin much smaller than the number of votes taken while the system was vulnerable. We also found protocol flaws, including vote verification that was itself susceptible to manipulation. This incident underscores the difficulty of conducting secure elections online and carries lessons for voters, election officials, and the e-voting research community

    An IoT analysis framework: An investigation of IoT smart cameras' vulnerabilities

    Get PDF

    Requirements and Recommendations for IoT/IIoT Models to automate Security Assurance through Threat Modelling, Security Analysis and Penetration Testing

    Full text link
    The factories of the future require efficient interconnection of their physical machines into the cyber space to cope with the emerging need of an increased uptime of machines, higher performance rates, an improved level of productivity and a collective collaboration along the supply chain. With the rapid growth of the Internet of Things (IoT), and its application in industrial areas, the so called Industrial Internet of Things (IIoT)/Industry 4.0 emerged. However, further to the rapid growth of IoT/IIoT systems, cyber attacks are an emerging threat and simple manual security testing can often not cope with the scale of large IoT/IIoT networks. In this paper, we suggest to extract metadata from commonly used diagrams and models in a typical software development process, to automate the process of threat modelling, security analysis and penetration testing, without detailed prior security knowledge. In that context, we present requirements and recommendations for metadata in IoT/IIoT models that are needed as necessary input parameters of security assurance tools.Comment: 8 pages, Proceedings of the 14th International Conference on Availability, Reliability and Security (ARES 2019) (ARES '19), August 26-29, 2019, Canterbury, United Kingdo

    Project BeARCAT : Baselining, Automation and Response for CAV Testbed Cyber Security : Connected Vehicle & Infrastructure Security Assessment

    Get PDF
    Connected, software-based systems are a driver in advancing the technology of transportation systems. Advanced automated and autonomous vehicles, together with electrification, will help reduce congestion, accidents and emissions. Meanwhile, vehicle manufacturers see advanced technology as enhancing their products in a competitive market. However, as many decades of using home and enterprise computer systems have shown, connectivity allows a system to become a target for criminal intentions. Cyber-based threats to any system are a problem; in transportation, there is the added safety implication of dealing with moving vehicles and the passengers within
    • …
    corecore