361 research outputs found

    Comparison of EEG based epilepsy diagnosis using neural networks and wavelet transform

    Full text link
    Epilepsy is one of the common neurological disorders characterized by recurrent and uncontrollable seizures, which seriously affect the life of patients. In many cases, electroencephalograms signal can provide important physiological information about the activity of the human brain which can be used to diagnose epilepsy. However, visual inspection of a large number of electroencephalogram signals is very time-consuming and can often lead to inconsistencies in physicians' diagnoses. Quantification of abnormalities in brain signals can indicate brain conditions and pathology so the electroencephalogram (EEG) signal plays a key role in the diagnosis of epilepsy. In this article, an attempt has been made to create a single instruction for diagnosing epilepsy, which consists of two steps. In the first step, a low-pass filter was used to preprocess the data and three separate mid-pass filters for different frequency bands and a multilayer neural network were designed. In the second step, the wavelet transform technique was used to process data. In particular, this paper proposes a multilayer perceptron neural network classifier for the diagnosis of epilepsy, that requires normal data and epilepsy data for education, but this classifier can recognize normal disorders, epilepsy, and even other disorders taught in educational examples. Also, the value of using electroencephalogram signal has been evaluated in two ways: using wavelet transform and non-using wavelet transform. Finally, the evaluation results indicate a relatively uniform impact factor on the use or non-use of wavelet transform on the improvement of epilepsy data functions, but in the end, it was shown that the use of perceptron multilayer neural network can provide a higher accuracy coefficient for experts.Comment: 8 pages, 4 tables, 3 figure

    A Tunable-Q wavelet transform and quadruple symmetric pattern based EEG signal classification method

    Get PDF
    Electroencephalography (EEG) signals have been widely used to diagnose brain diseases for instance epilepsy, Parkinson's Disease (PD), Multiple Skleroz (MS), and many machine learning methods have been proposed to develop automated disease diagnosis methods using EEG signals. In this method, a multilevel machine learning method is presented to diagnose epilepsy disease. The proposed multilevel EEG classification method consists of pre-processing, feature extraction, feature concatenation, feature selection and classification phases. In order to create levels, Tunable-Q wavelet transform (TQWT) is chosen and 25 frequency coefficients sub-bands are calculated by using TQWT in the pre-processing. In the feature extraction phase, quadruple symmetric pattern (QSP) is chosen as feature extractor and extracts 256 features from the raw EEG signal and the extracted 25 sub-bands. In the feature selection phase, neighborhood component analysis (NCA) is used. The 128, 256, 512 and 1024 most significant features are selected in this phase. In the classification phase, k nearest neighbors (kNN) classifier is utilized as classifier. The proposed method is tested on seven cases using Bonn EEG dataset. The proposed method achieved 98.4% success rate for 5 classes case. Therefore, our proposed method can be used in bigger datasets for more validation

    EEG-Based Driver Fatigue Detection Using FAWT and Multiboosting Approaches

    Get PDF
    Globally, 14%-20% of road accidents are mainly due to driver fatigue, the causes of which are instance sickness, travelling for long distance, boredom as a result of driving along the same route consistently, lack of enough sleep, etc. This article presents a flexible analytic wavelet transform (FAWT)-based advanced machine learning method using single modality neurophysiological brain electroencephalogram signals to detect the driver fatigues (i.e., FATIGUE and REST) and to alarm the driver at the earliest to prevent the risks during driving. First, signals of undertaking study groups are subjected to the FAWT that separates the signals into LP and HP channels. Subsequently, relevant subband frequency components with proper setting of tuning parameters are extracted. Then, comprehensive low order features which are statistically significant for p < 0.05, are evaluated from the input subband searched space and embedded them to various ensemble methods under multiboost strategy. Results are evaluated in terms of various parameters including accuracy, F-score, AUC, and kappa. Results show that the proposed approach is promising in classification and it achieves optimum individual accuracies of 97.10% and 97.90% in categorizing FATIGUE and REST states with F-score of 97.50%, AUC of 0.975, and kappa of 0.950. Comparison of the proposed method with the prior methods in the context of feature, accuracy, and modality profiles undertaken, indicates the effectiveness and reliability of the proposed method for real-world applications

    Developing artificial intelligence models for classification of brain disorder diseases based on statistical techniques

    Get PDF
    The Abstract is currently unavailable, due to the thesis being under Embargo

    Comprehensive electrocardiographic diagnosis based on deep learning

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death worldwide, and coronary artery disease (CAD) is a major contributor. Early-stage CAD can progress if undiagnosed and left untreated, leading to myocardial infarction (MI) that may induce irreversible heart muscle damage, resulting in heart chamber remodeling and eventual congestive heart failure (CHF). Electrocardiography (ECG) signals can be useful to detect established MI, and may also be helpful for early diagnosis of CAD. For the latter especially, the ECG perturbations can be subtle and potentially misclassified on manual interpretation and/or when analyzed by traditional algorithms found in ECG instrumentation. For automated diagnostic systems (ADS), deep learning techniques are favored over conventional machine learning techniques, due to the automatic feature extraction and selection processes involved. This paper highlights various deep learning algorithms exploited for the classification of ECG signals into CAD, MI, and CHF conditions. The Convolutional Neural Network (CNN), followed by combined CNN and Long Short-Term Memory (LSTM) models, appear to be the most useful architectures for classification. A 16-layer LSTM model was developed in our study and validated using 10-fold cross validation. A classification accuracy of 98.5% was achieved. Our proposed model has the potential to be a useful diagnostic tool in hospitals for the classification of abnormal ECG signals

    ΠžΠ±Π·ΠΎΡ€ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² автоматичСской диагностики сСрдСчной Π°Ρ€ΠΈΡ‚ΠΌΠΈΠΈ для принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΎ нСобходимости провСдСния дСфибрилляции

    Get PDF
    Ventricular fibrillation is considered the most common cause of sudden cardiac arrest. The fibrillation, and ventricular tachycardia often preceding it, are cardiac rhythms that may respond to emergency electroshock therapy and return to normal sinus rhythm when diagnosed early after cardiac arrest with the restoration of adequate cardiac pumping function. However, manually checking ECG signals on the existence of a pattern of such arrhythmias is a risky and time-consuming task in stressful situations and practically impossible in the absence of a qualified medical specialist. Therefore, systems of the computer classification of arrhythmias with the function of making a decision on the necessity of electric cardioversion with the parameters of a high-voltage pulse calculated adaptively for each patient are widely used for the automatic diagnosis of such conditions. This paper discusses methods of analyzing the electrocardiographic signal taken from the electrodes of an external automatic or semi-automatic defibrillator in order to make a decision on the necessity for defibrillation, which are applicable in the embedded software of automatic and semiautomatic external defibrillators. The paper includes an overview of applicable filtering techniques as well as subsequent algorithms for extracting, classifying and compressing features for the ECG signal.Β Β Lipchak D. A., Chupov A. A. Methods of Signal Analysis for Automatic Diagnosis of Shockable Cardiac Arrhythmias: A Review. Ural Radio Engineering Journal. 2021;5(4):380–409. (In Russ.) DOI: 10.15826/ urej.2021.5.4.004. Ѐибрилляция ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡ΠΊΠΎΠ² сСрдца считаСтся Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ часто Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‰Π΅ΠΉΡΡ ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΎΠΉ Π²Π½Π΅Π·Π°ΠΏΠ½ΠΎΠΉ остановки сСрдца. Вакая фибрилляция ΠΈ часто ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ Π΅ΠΉ ТСлудочковая тахикардия – это Ρ€ΠΈΡ‚ΠΌΡ‹ сСрдца, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Ρ€Π΅Π°Π³ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½Π° ΡΠΊΡΡ‚Ρ€Π΅Π½Π½ΡƒΡŽ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΡˆΠΎΠΊΠΎΠ²ΡƒΡŽ Ρ‚Π΅Ρ€Π°ΠΏΠΈΡŽ ΠΈ Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒΡΡ ΠΊ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ синусовому Ρ€ΠΈΡ‚ΠΌΡƒ ΠΏΡ€ΠΈ Ρ€Π°Π½Π½Π΅ΠΉ диагностикС послС остановки сСрдца с восстановлСниСм Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎΠΉ насосной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ сСрдца. Однако ручная ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° сигналов Π­ΠšΠ“ Π½Π° Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½Π° Ρ‚Π°ΠΊΠΎΠΉ Π°Ρ€ΠΈΡ‚ΠΌΠΈΠΈ являСтся слоТной аналитичСской Π·Π°Π΄Π°Ρ‡Π΅ΠΉ, Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‰Π΅ΠΉ Π½Π΅ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ³ΠΎ принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π² стрСссовой ситуации, практичСски Π½Π΅Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΠΌΠΎΠΉ Π² отсутствиС ΠΊΠ²Π°Π»ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ мСдицинского спСциалиста. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ для автоматичСской диагностики острых состояний ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ систСмы ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ классификации Π°Ρ€ΠΈΡ‚ΠΌΠΈΠΉ с Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΎ нСобходимости провСдСния элСктрокардиотСрапии с ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Π²Ρ‹ΡΠΎΠΊΠΎΠ²ΠΎΠ»ΡŒΡ‚Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°, вычислСнного Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΎ для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ рассмотрСны ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π°Π½Π°Π»ΠΈΠ·Π° элСктрокардиографичСского сигнала, снимаСмого с элСктродов Π½Π°Ρ€ΡƒΠΆΠ½ΠΎΠ³ΠΎ автоматичСского ΠΈΠ»ΠΈ полуавтоматичСского дСфибриллятора, с Ρ†Π΅Π»ΡŒΡŽ принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΎ нСобходимости оказания дСфибрилляции, ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΡ‹Π΅ Π²ΠΎ встроСнном ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΌ обСспСчСнии автоматичСских ΠΈ полуавтоматичСских Π²Π½Π΅ΡˆΠ½ΠΈΡ… дСфибрилляторов. Π Π°Π±ΠΎΡ‚Π° Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ ΠΎΠ±Π·ΠΎΡ€ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΡ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² извлСчСния, классификации ΠΈ сТатия Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² для сигнала Π­ΠšΠ“.Β Β Π›ΠΈΠΏΡ‡Π°ΠΊ Π”. А., Π§ΡƒΠΏΠΎΠ² А. А. ΠžΠ±Π·ΠΎΡ€ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² автоматичСской диагностики сСрдСчной Π°Ρ€ΠΈΡ‚ΠΌΠΈΠΈ для принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΎ нСобходимости провСдСния дСфибрилляции. Ural Radio Engineering Journal. 2021;5(4):380–409. DOI: 10.15826/urej.2021.5.4.004.
    • …
    corecore