68 research outputs found

    A model to enhance the atrial fibrillations’ risk detection using deep learning

    Get PDF
    Atrial fibrillation (AF) is a complex arrhythmia linked to a variety of common cardiovascular illnesses and conventional cardiovascular risk factors. Although awareness and improved detection of AF have improved over the last decade as the incidence and prevalence of AF has increased, current trends in using machine learning approaches to diagnose AF are still lacking in precision. To determine the true nature of the Electrocardiography (ECG) signal segments, a Convolutional Neural Network (CNN) model was employed to discover hidden information. Fully Connected (FC) layers were then utilized to categorize the ECG data segments as normal or abnormal. The suggested algorithm's findings were compared to state-of-the-art arrhythmia identification algorithms in the literature for the MIT-BIH ECG database. The methodology proved not only to yield high classification performance (98.5%) but also low processing computational advantage where the CNN was the most accurate algorithm used for atrial fibrillation detection hence. To conclude the findings of the research, a model was prepared to test the accuracy of the most common ML algorithms used for AF detection. After comparing the results of the experiment, it was clear that CNN algorithm is the best approach compared to Support Vector Machine (SVM) and K-Nearest Neighbor (KNN)

    Classification of De novo post-operative and persistent atrial fibrillation using multi-channel ECG recordings

    Get PDF
    Atrial fibrillation (AF) is the most sustained arrhythmia in the heart and also the most common complication developed after cardiac surgery. Due to its progressive nature, timely detection of AF is important. Currently, physicians use a surface electrocardiogram (ECG) for AF diagnosis. However, when the patient develops AF, its various development stages are not distinguishable for cardiologists based on visual inspection of the surface ECG signals. Therefore, severity detection of AF could start from differentiating between short-lasting AF and long-lasting AF. Here, de novo post-operative AF (POAF) is a good model for short-lasting AF while long-lasting AF can be represented by persistent AF. Therefore, we address in this paper a binary severity detection of AF for two specific types of AF. We focus on the differentiation of these two types as de novo POAF is the first time that a patient develops AF. Hence, comparing its development to a more severe stage of AF (e.g., persistent AF) could be beneficial in unveiling the electrical changes in the atrium. To the best of our knowledge, this is the first paper that aims to differentiate these different AF stages. We propose a method that consists of three sets of discriminative features based on fundamentally different aspects of the multi-channel ECG data, namely based on the analysis of RR intervals, a greyscale image representation of the vectorcardiogram, and the frequency domain representation of the ECG. Due to the nature of AF, these features are able to capture both morphological and rhythmic changes in the ECGs. Our classification system consists of a random forest classifier, after a feature selection stage using the ReliefF method. The detection efficiency is tested on 151 patients using 5-fold cross-validation. We achieved 89.07% accuracy in the classification of de novo POAF and persistent AF. The results show that the features are discriminative to reveal the severity of AF. Moreover, inspection of the most important features sheds light on the different characteristics of de novo post-operative and persistent AF.</p

    Algorithms for automated diagnosis of cardiovascular diseases based on ECG data: A comprehensive systematic review

    Get PDF
    The prevalence of cardiovascular diseases is increasing around the world. However, the technology is evolving and can be monitored with low-cost sensors anywhere at any time. This subject is being researched, and different methods can automatically identify these diseases, helping patients and healthcare professionals with the treatments. This paper presents a systematic review of disease identification, classification, and recognition with ECG sensors. The review was focused on studies published between 2017 and 2022 in different scientific databases, including PubMed Central, Springer, Elsevier, Multidisciplinary Digital Publishing Institute (MDPI), IEEE Xplore, and Frontiers. It results in the quantitative and qualitative analysis of 103 scientific papers. The study demonstrated that different datasets are available online with data related to various diseases. Several ML/DP-based models were identified in the research, where Convolutional Neural Network and Support Vector Machine were the most applied algorithms. This review can allow us to identify the techniques that can be used in a system that promotes the patient’s autonomy.N/

    Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review.

    Get PDF
    Computer systems for Electrocardiogram (ECG) analysis support the clinician in tedious tasks (e.g., Holter ECG monitored in Intensive Care Units) or in prompt detection of dangerous events (e.g., ventricular fibrillation). Together with clinical applications (arrhythmia detection and heart rate variability analysis), ECG is currently being investigated in biometrics (human identification), an emerging area receiving increasing attention. Methodologies for clinical applications can have both differences and similarities with respect to biometrics. This paper reviews methods of ECG processing from a pattern recognition perspective. In particular, we focus on features commonly used for heartbeat classification. Considering the vast literature in the field and the limited space of this review, we dedicated a detailed discussion only to a few classifiers (Artificial Neural Networks and Support Vector Machines) because of their popularity; however, other techniques such as Hidden Markov Models and Kalman Filtering will be also mentioned

    Design techniques for smart and energy-efficient wireless body sensor networks

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, leída el 26/10/2012Las redes inalámbricas de sensores corporales (en inglés: "wireless body sensor networks" o WBSNs) para monitorización, diagnóstico y detección de emergencias, están ganando popularidad y están llamadas a cambiar profundamente la asistencia sanitaria en los próximos años. El uso de estas redes permite una supervisión continua, contribuyendo a la prevención y el diagnóstico precoz de enfermedades, al tiempo que mejora la autonomía del paciente con respecto a otros sistemas de monitorización actuales. Valiéndose de esta tecnología, esta tesis propone el desarrollo de un sistema de monitorización de electrocardiograma (ECG), que no sólo muestre continuamente el ECG del paciente, sino que además lo analice en tiempo real y sea capaz de dar información sobre el estado del corazón a través de un dispositivo móvil. Esta información también puede ser enviada al personal médico en tiempo real. Si ocurre un evento peligroso, el sistema lo detectará automáticamente e informará de inmediato al paciente y al personal médico, posibilitando una rápida reacción en caso de emergencia. Para conseguir la implementación de dicho sistema, se desarrollan y optimizan distintos algoritmos de procesamiento de ECG en tiempo real, que incluyen filtrado, detección de puntos característicos y clasificación de arritmias. Esta tesis también aborda la mejora de la eficiencia energética de la red de sensores, cumpliendo con los requisitos de fidelidad y rendimiento de la aplicación. Para ello se proponen técnicas de diseño para reducir el consumo de energía, que permitan buscar un compromiso óptimo entre el tamaño de la batería y su tiempo de vida. Si el consumo de energía puede reducirse lo suficiente, sería posible desarrollar una red que funcione permanentemente. Por lo tanto, el muestreo, procesamiento, almacenamiento y transmisión inalámbrica tienen que hacerse de manera que se suministren todos los datos relevantes, pero con el menor consumo posible de energía, minimizando así el tamaño de la batería (que condiciona el tamaño total del nodo) y la frecuencia de recarga de la batería (otro factor clave para su usabilidad). Por lo tanto, para lograr una mejora en la eficiencia energética del sistema de monitorización y análisis de ECG propuesto en esta tesis, se estudian varias soluciones a nivel de control de acceso al medio y sistema operativo.Depto. de Arquitectura de Computadores y AutomáticaFac. de InformáticaTRUEunpu
    corecore