563 research outputs found

    Plant Localization and Discrimination using 2D+3D Computer Vision for Robotic Intra-row Weed Control

    Get PDF
    Weed management is vitally important in crop production systems. However, conventional herbicide based weed control can lead to negative environmental impacts. Manual weed control is laborious and impractical for large scale production. Robotic weed control offers a possibility of controlling weeds precisely, particularly for weeds growing near or within crop rows. A computer vision system was developed based on Kinect V2 sensor, using the fusion of two-dimensional textural data and three-dimensional spatial data to recognize and localized crop plants different growth stages. Images were acquired of different plant species such as broccoli, lettuce and corn at different growth stages. A database system was developed to organize these images. Several feature extraction algorithms were developed which addressed the problems of canopy occlusion and damaged leaves. With our proposed algorithms, different features were extracted and used to train plant and background classifiers. Finally, the efficiency and accuracy of the proposed classification methods were demonstrated and validated by experiments

    Plants Detection, Localization and Discrimination using 3D Machine Vision for Robotic Intra-row Weed Control

    Get PDF
    Weed management is vitally important in crop production systems. However, conventional herbicide-based weed control can lead to negative environmental impacts. Manual weed control is laborious and impractical for large scale production. Robotic weeding offers a possibility of controlling weeds precisely, particularly for weeds growing close to or within crop rows. The fusion of two-dimensional textural images and three-dimensional spatial images to recognize and localize crop plants at different growth stages were investigated. Images of different crop plants at different growth stages with weeds were acquired. Feature extraction algorithms were developed, and different features were extracted and used to train plant and background classifiers, which also addressed the problems of canopy occlusion and leaf damage. Then, the efficacy and accuracy of the proposed methods in classification were demonstrated by experiments. Currently, the algorithms were only developed and tested for broccoli and lettuce. For broccoli plants, the crop plants detection true positive rate was 93.1%, and the false discover rate was 1.1%, with the average crop-plant-localization error of 15.9 mm. For lettuce plants, the crop plants detection true positive rate was 92.3%, and the false discover rate was 4.0%, with the average crop-plant-localization error of 8.5 mm. The results have shown that 3D imaging based plant recognition algorithms are effective and reliable for crop/weed differentiation

    Task-based agricultural mobile robots in arable farming: A review

    Get PDF
    In agriculture (in the context of this paper, the terms “agriculture” and “farming” refer to only the farming of crops and exclude the farming of animals), smart farming and automated agricultural technology have emerged as promising methodologies for increasing the crop productivity without sacrificing produce quality. The emergence of various robotics technologies has facilitated the application of these techniques in agricultural processes. However, incorporating this technology in farms has proven to be challenging because of the large variations in shape, size, rate and type of growth, type of produce, and environmental requirements for different types of crops. Agricultural processes are chains of systematic, repetitive, and time-dependent tasks. However, some agricultural processes differ based on the type of farming, namely permanent crop farming and arable farming. Permanent crop farming includes permanent crops or woody plants such as orchards and vineyards whereas arable farming includes temporary crops such as wheat and rice. Major operations in open arable farming include tilling, soil analysis, seeding, transplanting, crop scouting, pest control, weed removal and harvesting where robots can assist in performing all of these tasks. Each specific operation requires axillary devices and sensors with specific functions. This article reviews the latest advances in the application of mobile robots in these agricultural operations for open arable farming and provide an overview of the systems and techniques that are used. This article also discusses various challenges for future improvements in using reliable mobile robots for arable farmin

    Actuators and sensors for application in agricultural robots: A review

    Get PDF
    In recent years, with the rapid development of science and technology, agricultural robots have gradually begun to replace humans, to complete various agricultural operations, changing traditional agricultural production methods. Not only is the labor input reduced, but also the production efficiency can be improved, which invariably contributes to the development of smart agriculture. This paper reviews the core technologies used for agricultural robots in non-structural environments. In addition, we review the technological progress of drive systems, control strategies, end-effectors, robotic arms, environmental perception, and other related systems. This research shows that in a non-structured agricultural environment, using cameras and light detection and ranging (LiDAR), as well as ultrasonic and satellite navigation equipment, and by integrating sensing, transmission, control, and operation, different types of actuators can be innovatively designed and developed to drive the advance of agricultural robots, to meet the delicate and complex requirements of agricultural products as operational objects, such that better productivity and standardization of agriculture can be achieved. In summary, agricultural production is developing toward a data-driven, standardized, and unmanned approach, with smart agriculture supported by actuator-driven-based agricultural robots. This paper concludes with a summary of the main existing technologies and challenges in the development of actuators for applications in agricultural robots, and the outlook regarding the primary development directions of agricultural robots in the near future

    A mixed-autonomous robotic platform for intra-row and inter-row weed removal for precision agriculture

    Get PDF
    The presence of weeds poses a common and persistent problem in crop cultivation, affecting both yield and overall agricultural productivity. Common solutions to the problem typically include chemical pesticides, mulching, or mechanical weeding performed by agricultural implements or humans. Even if effective, those techniques have several drawbacks, including soil and water pollution, high cost-effectiveness ratio or stress for operators. In recent years, novel robotic solutions have been proposed to overcome current limitations and to move towards more sustainable approaches to weeding. This work presents a mixed-autonomous, robotic, weeding system based on a fully integrated three-axis platform and a vision system mounted on a mobile rover. The rover’s motion is remotely controlled by a human operator, while weeds identification and removal is performed autonomously by the robotic system. Once in position, an RGB-D camera captures the portion of field to be treated. The acquired spatial, color and depth information is used to classify soil, the main crop, and the weeds to be removed using a pre-trained Deep Neural Network. Each target is then analyzed by a second RGB-D camera (mounted on the gripper) to confirm the correct classification before its removal. With the proposed approach, weeds are all the plants not classified as the main crop known a priori. The performance of the integrated robotic system has been tested in laboratory as well as in open field and in greenhouse conditions. The system was also tested under different light and shadowing conditions to evaluate the performance of the Deep Neural Network. Results show that the identification of the plants (both crop and weeds) is above 95%, increasing to 98% when additional information, such as the intra-row spacing, is provided. Nevertheless, the correct identification of the weeds remains above 97% ensuring an effective removal of weeds (up to 85%) with negligible crop damage (less than 5%)

    The Use of Agricultural Robots in Orchard Management

    Full text link
    Book chapter that summarizes recent research on agricultural robotics in orchard management, including Robotic pruning, Robotic thinning, Robotic spraying, Robotic harvesting, Robotic fruit transportation, and future trends.Comment: 22 page
    • …
    corecore