32 research outputs found

    Self-Organized Coverage and Capacity Optimization for Cellular Mobile Networks

    Get PDF
    Die zur Erfüllung der zu erwartenden Steigerungen übertragener Datenmengen notwendige größere Heterogenität und steigende Anzahl von Zellen werden in der Zukunft zu einer deutlich höheren Komplexität bei Planung und Optimierung von Funknetzen führen. Zusätzlich erfordern räumliche und zeitliche Änderungen der Lastverteilung eine dynamische Anpassung von Funkabdeckung und -kapazität (Coverage-Capacity-Optimization, CCO). Aktuelle Planungs- und Optimierungsverfahren sind hochgradig von menschlichem Einfluss abhängig, was sie zeitaufwändig und teuer macht. Aus diesen Grnden treffen Ansätze zur besseren Automatisierung des Netzwerkmanagements sowohl in der Industrie, als auch der Forschung auf groes Interesse.Selbstorganisationstechniken (SO) haben das Potential, viele der aktuell durch Menschen gesteuerten Abläufe zu automatisieren. Ihnen wird daher eine zentrale Rolle bei der Realisierung eines einfachen und effizienten Netzwerkmanagements zugeschrieben. Die vorliegende Arbeit befasst sich mit selbstorganisierter Optimierung von Abdeckung und Übertragungskapazität in Funkzellennetzwerken. Der Parameter der Wahl hierfür ist die Antennenneigung. Die zahlreichen vorhandenen Ansätze hierfür befassen sich mit dem Einsatz heuristischer Algorithmen in der Netzwerkplanung. Im Gegensatz dazu betrachtet diese Arbeit den verteilten Einsatz entsprechender Optimierungsverfahren in den betreffenden Netzwerkknoten. Durch diesen Ansatz können zentrale Fehlerquellen (Single Point of Failure) und Skalierbarkeitsprobleme in den kommenden heterogenen Netzwerken mit hoher Knotendichte vermieden werden.Diese Arbeit stellt einen "Fuzzy Q-Learning (FQL)"-basierten Ansatz vor, ein einfaches Maschinenlernverfahren mit einer effektiven Abstraktion kontinuierlicher Eingabeparameter. Das CCO-Problem wird als Multi-Agenten-Lernproblem modelliert, in dem jede Zelle versucht, ihre optimale Handlungsstrategie (d.h. die optimale Anpassung der Antennenneigung) zu lernen. Die entstehende Dynamik der Interaktion mehrerer Agenten macht die Fragestellung interessant. Die Arbeit betrachtet verschiedene Aspekte des Problems, wie beispielsweise den Unterschied zwischen egoistischen und kooperativen Lernverfahren, verteiltem und zentralisiertem Lernen, sowie die Auswirkungen einer gleichzeitigen Modifikation der Antennenneigung auf verschiedenen Knoten und deren Effekt auf die Lerneffizienz.Die Leistungsfähigkeit der betrachteten Verfahren wird mittels eine LTE-Systemsimulators evaluiert. Dabei werden sowohl gleichmäßig verteilte Zellen, als auch Zellen ungleicher Größe betrachtet. Die entwickelten Ansätze werden mit bekannten Lösungen aus der Literatur verglichen. Die Ergebnisse zeigen, dass die vorgeschlagenen Lösungen effektiv auf Änderungen im Netzwerk und der Umgebung reagieren können. Zellen stellen sich selbsttätig schnell auf Ausfälle und Inbetriebnahmen benachbarter Systeme ein und passen ihre Antennenneigung geeignet an um die Gesamtleistung des Netzes zu verbessern. Die vorgestellten Lernverfahren erreichen eine bis zu 30 Prozent verbesserte Leistung als bereits bekannte Ansätze. Die Verbesserungen steigen mit der Netzwerkgröße.The challenging task of cellular network planning and optimization will become more and more complex because of the expected heterogeneity and enormous number of cells required to meet the traffic demands of coming years. Moreover, the spatio-temporal variations in the traffic patterns of cellular networks require their coverage and capacity to be adapted dynamically. The current network planning and optimization procedures are highly manual, which makes them very time consuming and resource inefficient. For these reasons, there is a strong interest in industry and academics alike to enhance the degree of automation in network management. Especially, the idea of Self-Organization (SO) is seen as the key to simplified and efficient cellular network management by automating most of the current manual procedures. In this thesis, we study the self-organized coverage and capacity optimization of cellular mobile networks using antenna tilt adaptations. Although, this problem is widely studied in literature but most of the present work focuses on heuristic algorithms for network planning tool automation. In our study we want to minimize this reliance on these centralized tools and empower the network elements for their own optimization. This way we can avoid the single point of failure and scalability issues in the emerging heterogeneous and densely deployed networks.In this thesis, we focus on Fuzzy Q-Learning (FQL), a machine learning technique that provides a simple learning mechanism and an effective abstraction level for continuous domain variables. We model the coverage-capacity optimization as a multi-agent learning problem where each cell is trying to learn its optimal action policy i.e. the antenna tilt adjustments. The network dynamics and the behavior of multiple learning agents makes it a highly interesting problem. We look into different aspects of this problem like the effect of selfish learning vs. cooperative learning, distributed vs. centralized learning as well as the effect of simultaneous parallel antenna tilt adaptations by multiple agents and its effect on the learning efficiency.We evaluate the performance of the proposed learning schemes using a system level LTE simulator. We test our schemes in regular hexagonal cell deployment as well as in irregular cell deployment. We also compare our results to a relevant learning scheme from literature. The results show that the proposed learning schemes can effectively respond to the network and environmental dynamics in an autonomous way. The cells can quickly respond to the cell outages and deployments and can re-adjust their antenna tilts to improve the overall network performance. Additionally the proposed learning schemes can achieve up to 30 percent better performance than the available scheme from literature and these gains increases with the increasing network size

    Self-Optimization of Coverage and Capacity in LTE using Adaptive Antenna Systems

    Get PDF
    In cellular radio networks, the selection of antenna parameters and techniques for antennas plays a key role for capacity and coverage area. Not only network performance is affected by suboptimal network planning but also it is affected by the dynamic radio environment. Therefore, antenna parameters should be adjusted adaptively. Since reacting to the changed situation manually is very expensive and time consuming, The Third Generation Partnership Project (3GPP) introduced the Coverage and Capacity Optimization (CCO) use case for Long Term Evolution (LTE) under the topic of Self-Organizing Network (SON). This thesis work provides a detailed analysis of the optimization space of antenna parameters and compares different tilt techniques as well as discusses vertical sectorization as a novel capacity optimization approach. The work continues by further focusing on the self optimization of coverage and capacity using Adaptive Antenna Systems (AAS) on the basis of findings in the previous simulations on antenna parameters. Evaluations are performed by mapping link-level simulation results into a system level LTE simulator that models antennas in details and propagation in three dimensions

    Benefits and limits of machine learning for the implicit coordination on SON functions

    Get PDF
    Bedingt durch die Einführung neuer Netzfunktionen in den Mobilfunknetzen der nächsten Generation, z. B. Slicing oder Mehrantennensysteme, sowie durch die Koexistenz mehrerer Funkzugangstechnologien, werden die Optimierungsaufgaben äußerst komplex und erhöhen die OPEX (OPerational EXpenditures). Um den Nutzern Dienste mit wettbewerbsfähiger Dienstgüte (QoS) zu bieten und gleichzeitig die Betriebskosten niedrig zu halten, wurde von den Standardisierungsgremien das Konzept des selbstorganisierenden Netzes (SON) eingeführt, um das Netzmanagement um eine Automatisierungsebene zu erweitern. Es wurden dafür mehrere SON-Funktionen (SFs) vorgeschlagen, um einen bestimmten Netzbereich, wie Abdeckung oder Kapazität, zu optimieren. Bei dem konventionellen Entwurf der SFs wurde jede Funktion als Regler mit geschlossenem Regelkreis konzipiert, der ein lokales Ziel durch die Einstellung bestimmter Netzwerkparameter optimiert. Die Beziehung zwischen mehreren SFs wurde dabei jedoch bis zu einem gewissen Grad vernachlässigt. Daher treten viele widersprüchliche Szenarien auf, wenn mehrere SFs in einem mobilen Netzwerk instanziiert werden. Solche widersprüchlichen Funktionen in den Netzen verschlechtern die QoS der Benutzer und beeinträchtigen die Signalisierungsressourcen im Netz. Es wird daher erwartet, dass eine existierende Koordinierungsschicht (die auch eine Entität im Netz sein könnte) die Konflikte zwischen SFs lösen kann. Da diese Funktionen jedoch eng miteinander verknüpft sind, ist es schwierig, ihre Interaktionen und Abhängigkeiten in einer abgeschlossenen Form zu modellieren. Daher wird maschinelles Lernen vorgeschlagen, um eine gemeinsame Optimierung eines globalen Leistungsindikators (Key Performance Indicator, KPI) so voranzubringen, dass die komplizierten Beziehungen zwischen den Funktionen verborgen bleiben. Wir nennen diesen Ansatz: implizite Koordination. Im ersten Teil dieser Arbeit schlagen wir eine zentralisierte, implizite und auf maschinellem Lernen basierende Koordination vor und wenden sie auf die Koordination zweier etablierter SFs an: Mobility Robustness Optimization (MRO) und Mobility Load Balancing (MLB). Anschließend gestalten wir die Lösung dateneffizienter (d. h. wir erreichen die gleiche Modellleistung mit weniger Trainingsdaten), indem wir eine geschlossene Modellierung einbetten, um einen Teil des optimalen Parametersatzes zu finden. Wir nennen dies einen "hybriden Ansatz". Mit dem hybriden Ansatz untersuchen wir den Konflikt zwischen MLB und Coverage and Capacity Optimization (CCO) Funktionen. Dann wenden wir ihn auf die Koordinierung zwischen MLB, Inter-Cell Interference Coordination (ICIC) und Energy Savings (ES) Funktionen an. Schließlich stellen wir eine Möglichkeit vor, MRO formal in den hybriden Ansatz einzubeziehen, und zeigen, wie der Rahmen erweitert werden kann, um anspruchsvolle Netzwerkszenarien wie Ultra-Reliable Low Latency Communications (URLLC) abzudecken.Due to the introduction of new network functionalities in next-generation mobile networks, e.g., slicing or multi-antenna systems, as well as the coexistence of multiple radio access technologies, the optimization tasks become extremely complex, increasing the OPEX (OPerational EXpenditures). In order to provide services to the users with competitive Quality of Service (QoS) while keeping low operational costs, the Self-Organizing Network (SON) concept was introduced by the standardization bodies to add an automation layer to the network management. Thus, multiple SON functions (SFs) were proposed to optimize a specific network domain, like coverage or capacity. The conventional design of SFs conceived each function as a closed-loop controller optimizing a local objective by tuning specific network parameters. However, the relationship among multiple SFs was neglected to some extent. Therefore, many conflicting scenarios appear when multiple SFs are instantiated in a mobile network. Having conflicting functions in the networks deteriorates the users’ QoS and affects the signaling resources in the network. Thus, it is expected to have a coordination layer (which could also be an entity in the network), conciliating the conflicts between SFs. Nevertheless, due to interleaved linkage among those functions, it is complex to model their interactions and dependencies in a closed form. Thus, machine learning is proposed to drive a joint optimization of a global Key Performance Indicator (KPI), hiding the intricate relationships between functions. We call this approach: implicit coordination. In the first part of this thesis, we propose a centralized, fully-implicit coordination approach based on machine learning (ML), and apply it to the coordination of two well-established SFs: Mobility Robustness Optimization (MRO) and Mobility Load Balancing (MLB). We find that this approach can be applied as long as the coordination problem is decomposed into three functional planes: controllable, environmental, and utility planes. However, the fully-implicit coordination comes at a high cost: it requires a large amount of data to train the ML models. To improve the data efficiency of our approach (i.e., achieving good model performance with less training data), we propose a hybrid approach, which mixes ML with closed-form models. With the hybrid approach, we study the conflict between MLB and Coverage and Capacity Optimization (CCO) functions. Then, we apply it to the coordination among MLB, Inter-Cell Interference Coordination (ICIC), and Energy Savings (ES) functions. With the hybrid approach, we find in one shot, part of the parameter set in an optimal manner, which makes it suitable for dynamic scenarios in which fast response is expected from a centralized coordinator. Finally, we present a manner to formally include MRO in the hybrid approach and show how the framework can be extended to cover challenging network scenarios like Ultra-Reliable Low Latency Communications (URLLC)

    A modular web-based software solution for mobile networks planning, operation and optimization

    Get PDF
    Mobile networks management is increasingly critical due to heavy communications usage by customers and complex due to the multiple technologies and systems deployed. Thus, Mobile Network Operators (MNOs) are constantly looking for better software solutions and tools to help them increase network performance and manage their networks more efficiently. In this paper, we present a modular web-based software solution to tackle problems related to mobile network planning, operation and optimization. The solution is focused on a set of functional requirements carefully chosen to support the network life cycle management, from planning to Operation and Maintenance (OAM) and optimisation stages. Based on a 3-tier modular architecture and implemented using only open-source software, the solution handles multiple data sources (e.g., Drive Test (DT) and Performance Management (PM)) and multiple Radio Access Network (RAN) technologies. MNOs can explore all available data through a flexible and user-friendly web interface, that also includes map-based visualization of the network. Moreover, the solution incorporates a set of recently developed and validated RAN algorithms, supporting tasks of network diagnosis, optimization, and planning. Also, with the purpose of optimizing the network, MNOs can investigate network simulations, using the RAN algorithms, of how the network will behave under certain conditions, and visualize the outcome of those simulations.info:eu-repo/semantics/publishedVersio

    Self-organisation in LTE networks : an investigation

    Get PDF
    Mobile telecommunications networks based on Long Term Evolution (LTE) technology promise faster throughput to their users. LTE networks are however susceptible to a phenomenon known as inter-cell interference which can greatly reduce the throughput of the network causing unacceptable degradation of performance for cell edge users. A number of approaches to mitigating or minimising inter-cell interference have been presented in the literature such as randomisation, cancellation and coordination. The possibility of coordination between network nodes in an LTE network is made possible through the introduction of the X2 network link. This thesis explores approaches to reducing the effect of inter-cell interference on the throughput of LTE networks by using the X2 link to coordinate the scheduling of radio resources. Three approaches to the reduction of inter-cell interference were developed. Localised organisation is a centralised scheme in which a scheduler is optimised by a Genetic Algorithm (GA) to reduce interference. Networked organisation makes use of the X2 communications link to enable the network nodes to exchange scheduling information in a way that lowers the level of interference across the whole network. Finally a more distributed and de-centralised approach is taken in which each of the network nodes optimises its own scheduling in coordination with its neighbours. An LTE network simulator was built to allow for experimental comparison between these techniques and a number of existing approaches and to serve as a test bed for future algorithm development. These approaches were found to significantly improve the throughput of the cell edge users who were most affected by intereference. In particular the networked aspect of these approaches yielded the best initial results showing clear improvement over the existing state of the art. The distributed approach shows significant promise given further development.EPSR

    Self-organisation in LTE networks : an investigation

    Get PDF
    Mobile telecommunications networks based on Long Term Evolution (LTE) technology promise faster throughput to their users. LTE networks are however susceptible to a phenomenon known as inter-cell interference which can greatly reduce the throughput of the network causing unacceptable degradation of performance for cell edge users. A number of approaches to mitigating or minimising inter-cell interference have been presented in the literature such as randomisation, cancellation and coordination. The possibility of coordination between network nodes in an LTE network is made possible through the introduction of the X2 network link. This thesis explores approaches to reducing the effect of inter-cell interference on the throughput of LTE networks by using the X2 link to coordinate the scheduling of radio resources. Three approaches to the reduction of inter-cell interference were developed. Localised organisation is a centralised scheme in which a scheduler is optimised by a Genetic Algorithm (GA) to reduce interference. Networked organisation makes use of the X2 communications link to enable the network nodes to exchange scheduling information in a way that lowers the level of interference across the whole network. Finally a more distributed and de-centralised approach is taken in which each of the network nodes optimises its own scheduling in coordination with its neighbours. An LTE network simulator was built to allow for experimental comparison between these techniques and a number of existing approaches and to serve as a test bed for future algorithm development. These approaches were found to significantly improve the throughput of the cell edge users who were most affected by intereference. In particular the networked aspect of these approaches yielded the best initial results showing clear improvement over the existing state of the art. The distributed approach shows significant promise given further development.EPSR

    Coverage measurements of NB-IoT technology

    Get PDF
    Abstract. The narrowband internet of things (NB-IoT) is a cellular radio access technology that provides seamless connectivity to wireless IoT devices with low latency, low power consumption, and long-range coverage. For long-range coverage, NB-IoT offers a coverage enhancement (CE) mechanism that is achieved by repeating the transmission of signals. Good network coverage is essential to reduce the battery usage and power consumption of IoT devices, while poor network coverage increases the number of repetitions in transmission, which causes high power consumption of IoT devices. The primary objective of this work is to determine the network coverage of NB-IoT technology under the University of Oulu’s 5G test network (5GTN) base station. In this thesis work, measurement results on key performance indicators such as reference signal received power (RSRP), reference signal received quality (RSRQ), received signal strength indicator (RSSI), and signal to noise plus interference (SINR) have been reported. The goal of the measurement is to find out the NB-IoT signal strength at different locations, which are served by the 5GTN cells configured with different parameters, e.g., Tx power levels, antenna tilt angles. The signal strength of NB-IoT technology has been measured at different places under the 5GTN base station in Oulu, Finland. Drive tests have been conducted to measure the signal strength of NB-IoT technology by using the Quectel BG96 module, Qualcomm kDC-5737 dongle and Keysight Nemo Outdoor software. The results have shown the values of RSRP, RSRQ, RSSI, and SINR at different locations within several kilometres of the 5GTN base stations. These values indicate the performance of the network and are used to assess the performance of network services to the end-users. In this work, the overall performance of the network has been checked to verify if network performance meets good signal levels and good network coverage. Relevant details of the NB-IoT technology, the theory behind the signal coverage and comparisons with the measurement results have also been discussed to check the relevance of the measurement results

    Antenna Downtilt Selection Methods for Radio Access Network Rollout Automation

    Get PDF
    At Elisa, a project called Mass Rollout Automation has been ongoing for a while, with the goal of automating as many parts of the rollout process as possible. This includes the automation of the Radio Access Network planning process. This type of automation differs from the Self-Organizing Network concept, where automation has a focus on operation and maintenance of a network after deployment. One of the parameters that must be selected during RAN planning is the antenna downtilt, which has an effect on network coverage, capacity and quality of service. The first research question is to determine if automation can reliably enough select the antenna downtilt angle prior to the deployment of a base station. The second research question is to find a downtilt selection method best suited for the Mass Rollout Automation project. To answer the questions two simulation scenarios were created based on the Elisa live network, and quality and coverage related predictions for three proposed downtilt methods were calculated. After analysis of the results, automation was found to be reliable enough for the selection of the downtilt angle, when comparing the predictions against the live network scenario. One method was found to be the best if quality were to be prioritized over coverage. Another method was found to be the overall safest pick, as it kept the network coverage and quality almost equal to the live network

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks
    corecore