2,823 research outputs found

    Diagnostic Value of Fully Automated Artificial Intelligence Powered Coronary Artery Calcium Scoring from 18F-FDG PET/CT

    Full text link
    OBJECTIVES The objective of this study was to assess the feasibility and accuracy of a fully automated artificial intelligence (AI) powered coronary artery calcium scoring (CACS) method on ungated CT in oncologic patients undergoing 18F-FDG PET/CT. METHODS A total of 100 oncologic patients examined between 2007 and 2015 were retrospectively included. All patients underwent 18F-FDG PET/CT and cardiac SPECT myocardial perfusion imaging (MPI) by 99mTc-tetrofosmin within 6 months. CACS was manually performed on non-contrast ECG-gated CT scans obtained from SPECT-MPI (i.e., reference standard). Additionally, CACS was performed using a cloud-based, user-independent tool (AI-CACS) on ungated CT scans from 18F-FDG-PET/CT examinations. Agatston scores from the manual CACS and AI-CACS were compared. RESULTS On a per-patient basis, the AI-CACS tool achieved a sensitivity and specificity of 85% and 90% for the detection of CAC. Interscore agreement of CACS between manual CACS and AI-CACS was 0.88 (95% CI: 0.827, 0.918). Interclass agreement of risk categories was 0.8 in weighted Kappa analysis, with a reclassification rate of 44% and an underestimation of one risk category by AI-CACS in 39% of cases. On a per-vessel basis, interscore agreement of CAC scores ranged from 0.716 for the circumflex artery to 0.863 for the left anterior descending artery. CONCLUSIONS Fully automated AI-CACS as performed on non-contrast free-breathing, ungated CT scans from 18F-FDG-PET/CT examinations is feasible and provides an acceptable to good estimation of CAC burden. CAC load on ungated CT is, however, generally underestimated by AI-CACS, which should be taken into account when interpreting imaging findings

    Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions

    Full text link
    Heavy smokers undergoing screening with low-dose chest CT are affected by cardiovascular disease as much as by lung cancer. Low-dose chest CT scans acquired in screening enable quantification of atherosclerotic calcifications and thus enable identification of subjects at increased cardiovascular risk. This paper presents a method for automatic detection of coronary artery, thoracic aorta and cardiac valve calcifications in low-dose chest CT using two consecutive convolutional neural networks. The first network identifies and labels potential calcifications according to their anatomical location and the second network identifies true calcifications among the detected candidates. This method was trained and evaluated on a set of 1744 CT scans from the National Lung Screening Trial. To determine whether any reconstruction or only images reconstructed with soft tissue filters can be used for calcification detection, we evaluated the method on soft and medium/sharp filter reconstructions separately. On soft filter reconstructions, the method achieved F1 scores of 0.89, 0.89, 0.67, and 0.55 for coronary artery, thoracic aorta, aortic valve and mitral valve calcifications, respectively. On sharp filter reconstructions, the F1 scores were 0.84, 0.81, 0.64, and 0.66, respectively. Linearly weighted kappa coefficients for risk category assignment based on per subject coronary artery calcium were 0.91 and 0.90 for soft and sharp filter reconstructions, respectively. These results demonstrate that the presented method enables reliable automatic cardiovascular risk assessment in all low-dose chest CT scans acquired for lung cancer screening

    Automatic coronary calcium scoring in chest CT using a deep neural network in direct comparison with non-contrast cardiac CT:A validation study

    Get PDF
    Purpose: To evaluate deep-learning based calcium quantification on Chest CT scans compared with manual evaluation, and to enable interpretation in terms of the traditional Agatston score on dedicated Cardiac CT. Methods: Automated calcium quantification was performed using a combination of deep-learning convolution neural networks with a ResNet-architecture for image features and a fully connected neural network for spatial coordinate features. Calcifications were identified automatically, after which the algorithm automatically excluded all non-coronary calcifications using coronary probability maps and aortic segmentation. The algorithm was first trained on cardiac-CTs and refined on non-triggered chest-CTs. This study used on 95 patients (cohort 1), who underwent both dedicated calcium scoring and chest-CT acquisitions using the Agatston score as reference standard and 168 patients (cohort 2) who underwent chest-CT only using qualitative expert assessment for external validation. Results from the deep-learning model were compared to Agatston-scores(cardiac-CTs) and manually determined calcium volumes(chest-CTs) and risk classifications. Results: In cohort 1, the Agatston score and AI determined calcium volume shows high correlation with a correlation coefficient of 0.921(p < 0.001) and R-2 of 0.91. According to the Agatston categories, a total of 67(70 %) were correctly classified with a sensitivity of 91 % and specificity of 92 % in detecting presence of coronary calcifications. Manual determined calcium volume on chest-CT showed excellent correlation with the AI volumes with a correlation coefficient of 0.923(p < 0.001) and R-2 of 0.96, no significant difference was found (p = 0.247). According to qualitative risk classifications in cohort 2, 138(82 %) cases were correctly classified with a k-coefficient of 0.74, representing good agreement. All wrongly classified scans (30(18 %)) were attributed to an adjacent category. Conclusion: Artificial intelligence based calcium quantification on chest-CTs shows good correlation compared to reference standards. Fully automating this process may reduce evaluation time and potentially optimize clinical calcium scoring without additional acquisitions

    An automatic deep learning approach for coronary artery calcium segmentation

    Full text link
    Coronary artery calcium (CAC) is a significant marker of atherosclerosis and cardiovascular events. In this work we present a system for the automatic quantification of calcium score in ECG-triggered non-contrast enhanced cardiac computed tomography (CT) images. The proposed system uses a supervised deep learning algorithm, i.e. convolutional neural network (CNN) for the segmentation and classification of candidate lesions as coronary or not, previously extracted in the region of the heart using a cardiac atlas. We trained our network with 45 CT volumes; 18 volumes were used to validate the model and 56 to test it. Individual lesions were detected with a sensitivity of 91.24%, a specificity of 95.37% and a positive predicted value (PPV) of 90.5%; comparing calcium score obtained by the system and calcium score manually evaluated by an expert operator, a Pearson coefficient of 0.983 was obtained. A high agreement (Cohen's k = 0.879) between manual and automatic risk prediction was also observed. These results demonstrated that convolutional neural networks can be effectively applied for the automatic segmentation and classification of coronary calcifications

    Application of AI in cardiovascular multimodality imaging

    Get PDF
    Technical advances in artificial intelligence (AI) in cardiac imaging are rapidly improving the reproducibility of this approach and the possibility to reduce time necessary to generate a report. In cardiac computed tomography angiography (CCTA) the main application of AI in clinical practice is focused on detection of stenosis, characterization of coronary plaques, and detection of myocardial ischemia. In cardiac magnetic resonance (CMR) the application of AI is focused on post-processing and particularly on the segmentation of cardiac chambers during late gadolinium enhancement. In echocardiography, the application of AI is focused on segmentation of cardiac chambers and is helpful for valvular function and wall motion abnormalities. The common thread represented by all of these techniques aims to shorten the time of interpretation without loss of information compared to the standard approach. In this review we provide an overview of AI applications in multimodality cardiac imaging

    Machine learning applications in cardiac computed tomography: a composite systematic review

    Get PDF
    Artificial intelligence and machine learning (ML) models are rapidly being applied to the analysis of cardiac computed tomography (CT). We sought to provide an overview of the contemporary advances brought about by the combination of ML and cardiac CT. Six searches were performed in Medline, Embase, and the Cochrane Library up to November 2021 for (i) CT-fractional flow reserve (CT-FFR), (ii) atrial fibrillation (AF), (iii) aortic stenosis, (iv) plaque characterization, (v) fat quantification, and (vi) coronary artery calcium score. We included 57 studies pertaining to the aforementioned topics. Non-invasive CT-FFR can accurately be estimated using ML algorithms and has the potential to reduce the requirement for invasive angiography. Coronary artery calcification and non-calcified coronary lesions can now be automatically and accurately calculated. Epicardial adipose tissue can also be automatically, accurately, and rapidly quantified. Effective ML algorithms have been developed to streamline and optimize the safety of aortic annular measurements to facilitate pre-transcatheter aortic valve replacement valve selection. Within electrophysiology, the left atrium (LA) can be segmented and resultant LA volumes have contributed to accurate predictions of post-ablation recurrence of AF. In this review, we discuss the latest studies and evolving techniques of ML and cardiac CT

    Accuracy of an Artificial Intelligence Deep Learning Algorithm Implementing a Recurrent Neural Network With Long Short-term Memory for the Automated Detection of Calcified Plaques From Coronary Computed Tomography Angiography

    Get PDF
    Purpose: The purpose of this study was to evaluate the accuracy of a novel fully automated deep learning (DL) algorithm implementing a recurrent neural network (RNN) with long short-term memory (LSTM) for the detection of coronary artery calcium (CAC) from coronary computed tomography angiography (CCTA) data. Materials and Methods: Under an IRB waiver and in HIPAA compliance, a total of 194 patients who had undergone CCTA were retrospectively included. Two observers independently evaluated the image quality and recorded the presence of CAC in the right (RCA), the combination of left main and left anterior descending (LM-LAD), and left circumflex (LCx) coronary arteries. Noncontrast CACS scans were allowed to be used in cases of uncertainty. Heart and coronary artery centerline detection and labeling were automatically performed. Presence of CAC was assessed by a RNN-LSTM. The algorithm's overall and per-vessel sensitivity, specificity, and diagnostic accuracy were calculated. Results: CAC was absent in 84 and present in 110 patients. As regards CCTA, the median subjective image quality, signal-to-noise ratio, and contrast-to-noise ratio were 3.0, 13.0, and 11.4. A total of 565 vessels were evaluated. On a per-vessel basis, the algorithm achieved a sensitivity, specificity, and diagnostic accuracy of 93.1% (confidence interval [CI], 84.3%-96.7%), 82.76% (CI, 74.6%-89.4%), and 86.7% (CI, 76.8%-87.9%), respectively, for the RCA, 93.1% (CI, 86.4%-97.7%), 95.5% (CI, 88.77%-98.75%), and 94.2% (CI. 90.2%-94.6%), respectively, for the LM-LAD, and 89.9% (CI, 80.2%-95.8%), 90.0% (CI, 83.2%-94.7%), and 89.9% (CI, 85.0%-94.1%), respectively, for the LCx. The overall sensitivity, specificity, and diagnostic accuracy were 92.1% (CI, 92.1%-95.2%), 88.9% (CI. 84.9%-92.1%), and 90.3% (CI, 88.0%-90.0%), respectively. When accounting for image quality, the algorithm achieved a sensitivity, specificity, and diagnostic accuracy of 76.2%, 87.5%, and 82.2%, respectively, for poor-quality data sets and 93.3%, 89.2% and 90.9%, respectively, when data sets rated adequate or higher were combined. Conclusion: The proposed RNN-LSTM demonstrated high diagnostic accuracy for the detection of CAC from CCTA

    Coronary Artery Centerline Extraction in Cardiac CT Angiography Using a CNN-Based Orientation Classifier

    Full text link
    Coronary artery centerline extraction in cardiac CT angiography (CCTA) images is a prerequisite for evaluation of stenoses and atherosclerotic plaque. We propose an algorithm that extracts coronary artery centerlines in CCTA using a convolutional neural network (CNN). A 3D dilated CNN is trained to predict the most likely direction and radius of an artery at any given point in a CCTA image based on a local image patch. Starting from a single seed point placed manually or automatically anywhere in a coronary artery, a tracker follows the vessel centerline in two directions using the predictions of the CNN. Tracking is terminated when no direction can be identified with high certainty. The CNN was trained using 32 manually annotated centerlines in a training set consisting of 8 CCTA images provided in the MICCAI 2008 Coronary Artery Tracking Challenge (CAT08). Evaluation using 24 test images of the CAT08 challenge showed that extracted centerlines had an average overlap of 93.7% with 96 manually annotated reference centerlines. Extracted centerline points were highly accurate, with an average distance of 0.21 mm to reference centerline points. In a second test set consisting of 50 CCTA scans, 5,448 markers in the coronary arteries were used as seed points to extract single centerlines. This showed strong correspondence between extracted centerlines and manually placed markers. In a third test set containing 36 CCTA scans, fully automatic seeding and centerline extraction led to extraction of on average 92% of clinically relevant coronary artery segments. The proposed method is able to accurately and efficiently determine the direction and radius of coronary arteries. The method can be trained with limited training data, and once trained allows fast automatic or interactive extraction of coronary artery trees from CCTA images.Comment: Accepted in Medical Image Analysi

    Applying Deep Learning To Identify Imaging Biomarkers To Predict Cardiac Outcomes In Cancer Patients

    Get PDF
    Cancer patients are a unique population with increased mortality from cardiovascular disease, however only half of high-risk patients are medically optimized. Physicians ascertain cardiovascular risk from several risk predictors using demographic information, family history, and imaging data. The Agatston score, a measure of total calcium burden in coronary arteries on CT scans, is the current best predictor for major adverse cardiac events (MACE). Yet, the score is limited as it does not provide information on atherosclerotic plaque characteristics or distribution. In this study, we use deep learning techniques to develop an imaging-based biomarker that can robustly predict MACE in lung cancer patients. We selected participants with screen-detected lung cancer from the National Lung Screening Trial (NLST) and used cardiovascular mortality as our primary outcome. We applied automated segmentation algorithms to low-dose chest CT scans from NLST participants to segment cardiac substructures. Following segmentation, we extracted radiomic features from selected cardiac structures. We then used this dataset to train a regression model to predict cardiovascular death. We used a pre-trained nnU-Net model to successfully segment large cardiac structures on CT scans. These automated large cardiac structures had features that were predictive of MACE. We then successfully extract radiomic features from our areas of interest and use this high-dimensional dataset to train a regression model to predict MACE. We demonstrated that automated segmentation algorithms can result in low-cost non-invasive predictive biomarkers for MACE. We were able to demonstrate that radiomic feature extraction from segmented substructures can be used to develop a high-dimensional biomarker. We hope that such a scoring system can help physicians adequately determine cardiovascular risk and intervene, resulting in better patient outcomes
    • …
    corecore