99 research outputs found

    Constraint Based Compiler Optimization for Energy Harvesting Applications

    Get PDF
    We propose a method for optimizing the energy efficiency of software code running on small computing devices in the Internet of Things (IoT) that are powered exclusively by electricity harvested from ambient energy in the environment. Due to the weak and unstable nature of the energy source, it is challenging for developers to manually optimize the software code to deal with mismatch between the intermittent power supply and the computation demand. Our method overcomes the challenge by using a combination of three techniques. First, we use static program analysis to automatically identify opportunities for precomputation, i.e., computation that may be performed ahead of time as opposed to just in time. Second, we optimize the precomputation policy, i.e., a way to split and reorder steps of a computation task in the original software to match the intermittent power supply while satisfying a variety of system requirements; this is accomplished by formulating energy optimization as a constraint satisfiability problem and then solving the problem using an off-the-shelf SMT solver. Third, we use a state-of-the-art compiler platform (LLVM) to automate the program transformation to ensure that the optimized software code is correct by construction. We have evaluated our method on a large number of benchmark programs, which are C programs implementing secure communication protocols that are popular for energy-harvesting IoT devices. Our experimental results show that the method is efficient in optimizing all benchmark programs. Furthermore, the optimized programs significantly outperform the original programs in terms of energy efficiency and latency, and the overall improvement ranges from 2.3X to 36.7X

    Sophisticated Batteryless Sensing

    Get PDF
    Wireless embedded sensing systems have revolutionized scientific, industrial, and consumer applications. Sensors have become a fixture in our daily lives, as well as the scientific and industrial communities by allowing continuous monitoring of people, wildlife, plants, buildings, roads and highways, pipelines, and countless other objects. Recently a new vision for sensing has emerged---known as the Internet-of-Things (IoT)---where trillions of devices invisibly sense, coordinate, and communicate to support our life and well being. However, the sheer scale of the IoT has presented serious problems for current sensing technologies---mainly, the unsustainable maintenance, ecological, and economic costs of recycling or disposing of trillions of batteries. This energy storage bottleneck has prevented massive deployments of tiny sensing devices at the edge of the IoT. This dissertation explores an alternative---leave the batteries behind, and harvest the energy required for sensing tasks from the environment the device is embedded in. These sensors can be made cheaper, smaller, and will last decades longer than their battery powered counterparts, making them a perfect fit for the requirements of the IoT. These sensors can be deployed where battery powered sensors cannot---embedded in concrete, shot into space, or even implanted in animals and people. However, these batteryless sensors may lose power at any point, with no warning, for unpredictable lengths of time. Programming, profiling, debugging, and building applications with these devices pose significant challenges. First, batteryless devices operate in unpredictable environments, where voltages vary and power failures can occur at any time---often devices are in failure for hours. Second, a device\u27s behavior effects the amount of energy they can harvest---meaning small changes in tasks can drastically change harvester efficiency. Third, the programming interfaces of batteryless devices are ill-defined and non- intuitive; most developers have trouble anticipating the problems inherent with an intermittent power supply. Finally, the lack of community, and a standard usable hardware platform have reduced the resources and prototyping ability of the developer. In this dissertation we present solutions to these challenges in the form of a tool for repeatable and realistic experimentation called Ekho, a reconfigurable hardware platform named Flicker, and a language and runtime for timely execution of intermittent programs called Mayfly

    Enabling Reliable, Efficient, and Secure Computing for Energy Harvesting Powered IoT Devices

    Get PDF
    Energy harvesting is one of the most promising techniques to power devices for future generation IoT. While energy harvesting does not have longevity, safety, and recharging concerns like traditional batteries, its instability brings a new challenge to the embedded systems: the energy harvested from environment is usually weak and intermittent. With traditional CMOS based technology, whenever the power is off, the computation has to start from the very beginning. Compared with existing CMOS based memory devices, emerging non-volatile memory devices such as PCM and STT-RAM, have the benefits of sustaining the data even when there is no power. By checkpointing the processor's volatile state to non-volatile memory, a program can resume its execution immediately after power comes back on again instead of restarting from the very beginning with checkpointing techniques. However, checkpointing is not sufficient for energy harvesting systems. First, the program execution resumed from the last checkpoint might not execute correctly and causes inconsistency problem to the system. This problem is due to the inconsistency between volatile system state and non-volatile system state during checkpointing. Second, the process of checkpointing consumes a considerable amount of energy and time due to the slow and energy-consuming write operation of non-volatile memory. Finally, connecting to the internet poses many security issues to energy harvesting IoT devices. Traditional data encryption methods are both energy and time consuming which do not fit the resource constrained IoT devices. Therefore, a light-weight encryption method is in urgent need for securing IoT devices. Targeting those three challenges, this dissertation proposes three techniques to enable reliable, efficient, and secure computing in energy harvesting IoT devices. First, a consistency-aware checkpointing technique is proposed to avoid inconsistency errors generated from the inconsistency between volatile state and non-volatile state. Second, checkpoint aware hybrid cache architecture is proposed to guarantee reliable checkpointing while maintaining a low checkpointing overhead from cache. Finally, to ensure the security of energy harvesting IoT devices, an energy-efficient in-memory encryption implementation for protecting the IoT device is proposed which can quickly encrypts the data in non-volatile memory and protect the embedded system physical and on-line attacks

    Optimizing Embedded Software of Self-Powered IoT Edge Devices for Transient Computing

    Get PDF
    IoT edge computing becomes increasingly popular as it can mitigate the burden of cloud servers significantly by offloading tasks from the cloud to the edge which contains the majority of IoT devices. Currently, there are trillions of edge devices all over the world, and this number keeps increasing. A vast amount of edge devices work under power-constrained scenarios such as for outdoor environmental monitoring. Considering the cost and sustainability, in the long run, self-powering through energy harvesting technology is preferred for these IoT edge devices. Nevertheless, a common and critical drawback of self-powered IoT edge devices is that their runtime states in volatile memory such as SRAM will be lost during the power outage. Thanks to the state-of-the-art non-volatile processor (NVP), the runtime volatile states can be saved into the on-chip non-volatile memory before the power outage and recovered when harvesting power becomes available. Yet the potential of a self-powered IoT edge device is still hindered by the intrinsic low energy efficiency and reliability. In order to fully exert the potentials of existing self-powered IoT edge devices, this dissertation aims at optimizing the energy efficiency and reliability of self-powered IoT edge devices through several software approaches. First, to prevent execution progress loss during the power outage, NVP-aware task schedulers are proposed to maximize the overall task execution progress especially for the atomic tasks of which the unfinished progress is subjected to loss regardless of having been checkpointed. Second, to minimize both the time and energy overheads of checkpointing operations on non-volatile memory, an intelligent checkpointing scheme is proposed which can not only ensure a successful checkpointing but also predict the necessity of conducting checkpointing to avoid excessive checkpointing overhead. Third, to avoid inappropriate runtime CPU clock frequency with low energy utility, a CPU frequency modulator is proposed which adjusts the runtime CPU clock frequency adaptively. Finally, to thrive in ultra-low harvesting power scenarios, a light-weight software paradigm is proposed to help maximize the energy extraction rate of the energy harvester and power regulator bundle. Besides, checkpointing is also optimized for more energy-efficient and light-weight operation

    Sytare: a Lightweight Kernel for NVRAM-Based Transiently-Powered Systems

    Get PDF
    International audienceIn a near future, energy harvesting is expected to replace batteries in ultra-low-power embedded systems. Research prototypes of such systems have recently been proposed. As the power harvested in the environment is very low, such systems need to cope with frequent power outages. They are referred to as transiently-powered systems (TPS). In order to execute non-trivial applications, TPS need to retain information between power losses. To achieve this goal, emerging non-volatile memory (NVM) technologies are a key enabler: they provide a lightweight solution to retain, between power outages, the state of an application and of its peripheral devices. These include sensors, serial interface or radio devices for instance. Existing works have described various checkpointing mechanisms to adapt embedded applications to TPS but the use of peripherals was not yet handled. in these works. This paper proposes a solution for embedded applications using any peripheral device to run despite transient power. We follow a kernel-oriented approach resulting in minimal impact on the programming model of the application. We implement the new concepts in our lightweight kernel called Sytare, running on an MSP430FR5739 micro-controller and we analyze the cost of the proposed solution

    Enabling Cyber-Physical Communication in 5G Cellular Networks: Challenges, Solutions and Applications

    Get PDF
    Cyber-physical systems (CPS) are expected to revolutionize the world through a myriad of applications in health-care, disaster event applications, environmental management, vehicular networks, industrial automation, and so on. The continuous explosive increase in wireless data traffic, driven by the global rise of smartphones, tablets, video streaming, and online social networking applications along with the anticipated wide massive sensors deployments, will create a set of challenges to network providers, especially that future fifth generation (5G) cellular networks will help facilitate the enabling of CPS communications over current network infrastructure. In this dissertation, we first provide an overview of CPS taxonomy along with its challenges from energy efficiency, security, and reliability. Then we present different tractable analytical solutions through different 5G technologies, such as device-to-device (D2D) communications, cell shrinking and offloading, in order to enable CPS traffic over cellular networks. These technologies also provide CPS with several benefits such as ubiquitous coverage, global connectivity, reliability and security. By tuning specific network parameters, the proposed solutions allow the achievement of balance and fairness in spectral efficiency and minimum achievable throughout among cellular users and CPS devices. To conclude, we present a CPS mobile-health application as a case study where security of the medical health cyber-physical space is discussed in details

    L2C: Combining Lossy and Lossless Compression on Memory and I/O

    Get PDF
    In this paper we introduce L2C, a hybrid lossy/lossless compression scheme applicable both to the memory subsystem and I/O traffic of a processor chip. L2C employs general-purpose lossless compression and combines it with state of the art lossy compression to achieve compression ratios up to 16:1 and improve the utilization of chip\u27s bandwidth resources. Compressing memory traffic yields lower memory access time, improving system performance and energy efficiency. Compressing I/O traffic offers several benefits for resource-constrained systems, including more efficient storage and networking.We evaluate L2C as a memory compressor in simulation with a set of approximation-tolerant applications. L2C improves baseline execution time by an average of 50\%, and total system energy consumption by 16%. Compared to the lossy and lossless current state of the art memory compression approaches, L2C improves execution time by 9% and 26% respectively, and reduces system energy costs by 3% and 5%, respectively.I/O compression efficacy is evaluated using a set of real-life datasets. L2C achieves compression ratios of up to 10.4:1 for a single dataset and on average about 4:1, while introducing no more than 0.4% error
    • …
    corecore