2,358 research outputs found

    Autoencoders for strategic decision support

    Full text link
    In the majority of executive domains, a notion of normality is involved in most strategic decisions. However, few data-driven tools that support strategic decision-making are available. We introduce and extend the use of autoencoders to provide strategically relevant granular feedback. A first experiment indicates that experts are inconsistent in their decision making, highlighting the need for strategic decision support. Furthermore, using two large industry-provided human resources datasets, the proposed solution is evaluated in terms of ranking accuracy, synergy with human experts, and dimension-level feedback. This three-point scheme is validated using (a) synthetic data, (b) the perspective of data quality, (c) blind expert validation, and (d) transparent expert evaluation. Our study confirms several principal weaknesses of human decision-making and stresses the importance of synergy between a model and humans. Moreover, unsupervised learning and in particular the autoencoder are shown to be valuable tools for strategic decision-making

    Learning Off-Road Terrain Traversability with Self-Supervisions Only

    Full text link
    Estimating the traversability of terrain should be reliable and accurate in diverse conditions for autonomous driving in off-road environments. However, learning-based approaches often yield unreliable results when confronted with unfamiliar contexts, and it is challenging to obtain manual annotations frequently for new circumstances. In this paper, we introduce a method for learning traversability from images that utilizes only self-supervision and no manual labels, enabling it to easily learn traversability in new circumstances. To this end, we first generate self-supervised traversability labels from past driving trajectories by labeling regions traversed by the vehicle as highly traversable. Using the self-supervised labels, we then train a neural network that identifies terrains that are safe to traverse from an image using a one-class classification algorithm. Additionally, we supplement the limitations of self-supervised labels by incorporating methods of self-supervised learning of visual representations. To conduct a comprehensive evaluation, we collect data in a variety of driving environments and perceptual conditions and show that our method produces reliable estimations in various environments. In addition, the experimental results validate that our method outperforms other self-supervised traversability estimation methods and achieves comparable performances with supervised learning methods trained on manually labeled data.Comment: Accepted to IEEE Robotics and Automation Letters. Our video can be found at https://bit.ly/3YdKan

    Semi-supervised and Active Learning Models for Software Fault Prediction

    Get PDF
    As software continues to insinuate itself into nearly every aspect of our life, the quality of software has been an extremely important issue. Software Quality Assurance (SQA) is a process that ensures the development of high-quality software. It concerns the important problem of maintaining, monitoring, and developing quality software. Accurate detection of fault prone components in software projects is one of the most commonly practiced techniques that offer the path to high quality products without excessive assurance expenditures. This type of quality modeling requires the availability of software modules with known fault content developed in similar environment. However, collection of fault data at module level, particularly in new projects, is expensive and time-consuming. Semi-supervised learning and active learning offer solutions to this problem for learning from limited labeled data by utilizing inexpensive unlabeled data.;In this dissertation, we investigate semi-supervised learning and active learning approaches in the software fault prediction problem. The role of base learner in semi-supervised learning is discussed using several state-of-the-art supervised learners. Our results showed that semi-supervised learning with appropriate base learner leads to better performance in fault proneness prediction compared to supervised learning. In addition, incorporating pre-processing technique prior to semi-supervised learning provides a promising direction to further improving the prediction performance. Active learning, sharing the similar idea as semi-supervised learning in utilizing unlabeled data, requires human efforts for labeling fault proneness in its learning process. Empirical results showed that active learning supplemented by dimensionality reduction technique performs better than the supervised learning on release-based data sets
    • …
    corecore