139 research outputs found

    Comparing Autoencoder to Geometrical Features for Vascular Bifurcations Identification

    Full text link
    The cerebrovascular tree is a complex anatomical structure that plays a crucial role in the brain irrigation. A precise identification of the bifurcations in the vascular network is essential for understanding various cerebral pathologies. Traditional methods often require manual intervention and are sensitive to variations in data quality. In recent years, deep learning techniques, and particularly autoencoders, have shown promising performances for feature extraction and pattern recognition in a variety of domains. In this paper, we propose two novel approaches for vascular bifurcation identification based respectiveley on Autoencoder and geometrical features. The performance and effectiveness of each method in terms of classification of vascular bifurcations using medical imaging data is presented. The evaluation was performed on a sample database composed of 91 TOF-MRA, using various evaluation measures, including accuracy, F1 score and confusion matrix.Comment: International Symposium on Image And Signal Processing and Analysis, Sep 2023, Rome, Ital

    Quantitative predictions of cerebral arterial labeling employing neural network ensemble orchestrate precise investigation in brain frailty of cerebrovascular disease

    Get PDF
    학위논문(석사) -- 서울대학교대학원 : 자연과학대학 협동과정 뇌과학전공, 2023. 2. 김상윤서우근(공동지도교수).Identifying the cerebral arterial branches is essential for undertaking a computational approach to cerebrovascular imaging. However, the complexity and inter-individual differences involved in this process have not been thoroughly studied. We used machine learning to examine the anatomical profile of the cerebral arterial tree. The method is less sensitive to inter-subject and cohort-wise anatomical variations and exhibits robust performance with an unprecedented in-depth vessel range. We applied machine learning algorithms to disease-free healthy control subjects (n = 42), patients with stroke with intracranial atherosclerosis (ICAS) (n = 46), and patients with stroke mixed with the existing controls (n = 69). We trained and tested 70% and 30% of each study cohort, respectively, incorporating spatial coordinates and geometric vessel feature vectors. Cerebral arterial images were analyzed based on the segmentation-stacking method using magnetic resonance angiography. We precisely classified the cerebral arteries across the exhaustive scope of vessel components using advanced geometric characterization, redefinition of vessel unit conception, and post-processing algorithms. We verified that the neural network ensemble, with multiple joint models as the combined predictor, classified all vessel component types independent of inter-subject variations in cerebral arterial anatomy. The validity of the categorization performance of the model was tested, considering the control, ICAS, and control-blended stroke cohorts, using the area under the receiver operating characteristic (ROC) curve and precision-recall curve. The classification accuracy rarely fell outside each images 90–99% scope, independent of cohort-dependent cerebrovascular structural variations. The classification ensemble was calibrated with high overall area rates under the ROC curve of 0.99–1.00 [0.97–1.00] in the test set across various study cohorts. Identifying an all-inclusive range of vessel components across controls, ICAS, and stroke patients, the accuracy rates of the prediction were: internal carotid arteries, 91–100%; middle cerebral arteries, 82–98%; anterior cerebral arteries, 88–100%; posterior cerebral arteries, 87–100%; and collections of superior, anterior inferior, and posterior inferior cerebellar arteries, 90–99% in the chunk-level classification. Using a voting algorithm on the queued classified vessel factors and anatomically post-processing the automatically classified results intensified quantitative prediction performance. We employed stochastic clustering and deep neural network ensembles. Machine intelligence-assisted prediction of vessel structure allowed us to personalize quantitative predictions of various types of cerebral arterial structures, contributing to precise and efficient decisions regarding cerebrovascular disease.CHAPTER 1. AUTOMATED IN-DEPTH CEREBRAL ARTERIAL LABELING USING CEREBROVASCULAR VASCULATURE REFRAMING AND DEEP NEURAL NETWORKS 8 1.1. INTRODUCTION 8 1.2.1. Study design and subjects 9 1.2.2. Imaging preparation 11 1.2.2.1. Magnetic resonance machine 11 1.2.2.2. Magnetic resonance sequence 11 1.2.2.3. Region growing 11 1.2.2.4. Feature extraction 11 1.2.3. Reframing hierarchical cerebrovasculature 12 1.2.4. Classification method development 14 1.2.4.1. Two-step modeling 14 1.2.4.2. Validation 16 1.2.4.3. Statistics 16 1.2.4.4. Data availability 16 1.3. RESULTS 16 1.3.1. Subject characteristics 16 1.3.2. Vascular component characteristics 21 1.3.3. Testing the appropriateness of the reframed vascular structure 24 1.3.4. Step 1 modeling: chunk 24 1.3.5. Step 2 modeling: branch 26 1.3.6. Vascular morphological features according to the vascular risk factors 31 1.3.7. The profiles of geometric feature vectors weighted on deep neural networks 31 1.4. DISCUSSION 35 1.4.1. The role of neural networks in this study 36 1.4.2. Paradigm-shifting vascular unit reframing 36 1.4.3. Limitations and future directions 37 1.5. CONCLUSIONS 38 1.6. ACKNOWLEDGEMENTS 38 1.7. FUNDING 39 BIBLIOGRAPHY 40석

    Extraction of arterial and venous trees from disconnected vessel segments in fundus images

    Get PDF
    The accurate automated extraction of arterial and venous (AV) trees in fundus images subserves investigation into the correlation of global features of the retinal vasculature with retinal abnormalities. The accurate extraction of AV trees also provides the opportunity to analyse the physiology and hemodynamic of blood flow in retinal vessel trees. A number of common diseases, including Diabetic Retinopathy, Cardiovascular and Cerebrovascular diseases, directly affect the morphology of the retinal vasculature. Early detection of these pathologies may prevent vision loss and reduce the risk of other life-threatening diseases. Automated extraction of AV trees requires complete segmentation and accurate classification of retinal vessels. Unfortunately, the available segmentation techniques are susceptible to a number of complications including vessel contrast, fuzzy edges, variable image quality, media opacities, and vessel overlaps. Due to these sources of errors, the available segmentation techniques produce partially segmented vascular networks. Thus, extracting AV trees by accurately connecting and classifying the disconnected segments is extremely complex. This thesis provides a novel graph-based technique for accurate extraction of AV trees from a network of disconnected and unclassified vessel segments in fundus viii images. The proposed technique performs three major tasks: junction identification, local configuration, and global configuration. A probabilistic approach is adopted that rigorously identifies junctions by examining the mutual associations of segment ends. These associations are determined by dynamically specifying regions at both ends of all segments. A supervised Naïve Bayes inference model is developed that estimates the probability of each possible configuration at a junction. The system enumerates all possible configurations and estimates posterior probability of each configuration. The likelihood function estimates the conditional probability of the configuration using the statistical parameters of distribution of colour and geometrical features of joints. The parameters of feature distributions and priors of configuration are obtained through supervised learning phases. A second Naïve Bayes classifier estimates class probabilities of each vessel segment utilizing colour and spatial properties of segments. The global configuration works by translating the segment network into an STgraph (a specialized form of dependency graph) representing the segments and their possible connective associations. The unary and pairwise potentials for ST-graph are estimated using the class and configuration probabilities obtained earlier. This translates the classification and configuration problems into a general binary labelling graph problem. The ST-graph is interpreted as a flow network for energy minimization a minimum ST-graph cut is obtained using the Ford-Fulkerson algorithm, from which the estimated AV trees are extracted. The performance is evaluated by implementing the system on test images of DRIVE dataset and comparing the obtained results with the ground truth data. The ground truth data is obtained by establishing a new dataset for DRIVE images with manually classified vessels. The system outperformed benchmark methods and produced excellent results

    Topology reconstruction of tree-like structure in images via structural similarity measure and dominant set clustering

    Get PDF
    The reconstruction and analysis of tree-like topological structures in the biomedical images is crucial for biologists and surgeons to understand biomedical conditions and plan surgical procedures. The underlying tree-structure topology reveals how different curvilinear components are anatomically connected to each other. Existing automated topology reconstruction methods have great difficulty in identifying the connectivity when two or more curvilinear components cross or bifurcate, due to their projection ambiguity, imaging noise and low contrast. In this paper, we propose a novel curvilinear structural similarity measure to guide a dominant-set clustering approach to address this indispensable issue. The novel similarity measure takes into account both intensity and geometric properties in representing the curvilinear structure locally and globally, and group curvilinear objects at crossover points into different connected branches by dominant-set clustering. The proposed method is applicable to different imaging modalities, and quantitative and qualitative results on retinal vessel, plant root, and neuronal network datasets show that our methodology is capable of advancing the current state-of-the-art techniques

    MACHINE LEARNING BASED ANALYSIS AND COMPUTER AIDED CLASSIFICATION OF NEUROPSYCHIATRIC DISORDERS USING NEUROIMAGING

    Get PDF
    Machine learning (ML) based analysis of neuroimages in neuropsychiatry context are advancing the understanding of neurobiological profiles and the pathological bases of neuropsychiatric disorders. Computational analysis and investigations on features derived from structural magnetic resonance imaging (sMRI) of the brain are used to quantify morphological or anatomical characteristics of the different regions of the brain that have role in several distinct brain functions. This helps in the realization of anatomical underpinnings of those disorders that cause brain atrophy. Structural neuroimaging data acquired from schizophrenia (SCZ), bipolar disorder (BD) patients and people who experienced psychosis for the first time, are used for the experiments presented in this thesis. The cerebral cortex (i.e., gray matter) of the brain is one of the most studied anatomical part using 'cortical-average-thickness' distribution feature in the literature. This helps in the realization of the anatomical underpinning of those mental illnesses that cause brain atrophy. To this regard, based on statistical background, 'cortical-skewness' feature, a novel digital imaging-derived neuroanatomical biomarker that could potentially assist in the differentiation of healthy control (HC) and patient groups is proposed and tested in this thesis. The core theme of machine intelligence relies in extracting and learning patterns of input data from experience. Classification is one of the task. In a basic set up, ML algorithms are trained using exemplary multivariate data features and its associated class labels, so that they could be able to create models and do predictive classification and other tasks. Considering the conundrum nature of psychiatric disorders, researchers in the field, could benefit from ML based analysis of complex brain patterns. Out of many, one task is computer aided classification (CAC). This is achieved by training the algorithms, these complex brain patterns and their corresponding diagnostic statistics manual (DSM) based clinical gold standard labels. Indeed, in the literature, supervised learning methods such as support vector machines (SVM) which follow inductive learning strategy are widely exploited and achieved interesting results. Observing this and due to the fact that the most widely available relevant anatomical features of the cortex such as thickness and volume values, could not be considered satisfactory features because of the heterogeneous nature of the human brain anatomy due to differences in age, gender etc., a contextual similarity based learning is proposed. This learning uses a transductive learning mechanism (i.e, learn a specific function for the problem at hand) instead of learning a general function to solve a specific problem. Based on this, it is adopted, a formulation of a semi supervised graph transduction (label propagation) algorithm based on the notions of game theory, where the consistent labeling is represented with Nash equilibrium, to tackle the problem of learning from neuroimages with subtle microscopic difference among different clinical groups. However, since such kind of algorithms heavily rely on the graph structure of the extracted features, we extended the classification procedure by introducing a pre-training phase based on a distance metric learning strategy with the aim of enhancing the contextual similarity of the images by providing a 'must belong in the same class' and 'must not belong in the same class' constraint from the available training data. This would result to increase intra-class similarity and decrease inter-class similarity. The proposed classification pipeline is used for searching anatomical biomarkers. With the goal of identifying potential neuroanatomical markers of a psychiatric disorder, it is aimed to develop a feature selection strategy taking into consideration the widely exploited cortical thickness and the proposed skewness feature, with the objective of searching a combination of features from all cortical regions of the brain that could maximize the possible differentiation among the different clinical groups Considering Research Domain Criteria (RDoC) framework developed by National Institute of Mental Health (NIMH) with the aim of developing biologically valid perspective of mental disorders by integrating multimodal sources, clinical interview scores and neuroimaging data are used with ML methods to tackle the challenging problem of differential classification of BD vs. SCZ. Finally, as deep learning methods are emerging with remarkable results in several application domains, we adopted this class of methods especially convolutional neural networks (CNNs) with a 3D approach, to extract volumetric neuroanatomical markers. CAC of first episode psychosis (FEP) is performed by exploiting the 3D complex spatial structure of the brain to identify key regions of the brain associated with the pathophysiology of FEP. Testing of individualized predictions with big dataset of 855 structural scans to identify possible markers of the disease is performed

    Unsupervised learning for vascular heterogeneity assessment of glioblastoma based on magnetic resonance imaging: The Hemodynamic Tissue Signature

    Full text link
    [ES] El futuro de la imagen médica está ligado a la inteligencia artificial. El análisis manual de imágenes médicas es hoy en día una tarea ardua, propensa a errores y a menudo inasequible para los humanos, que ha llamado la atención de la comunidad de Aprendizaje Automático (AA). La Imagen por Resonancia Magnética (IRM) nos proporciona una rica variedad de representaciones de la morfología y el comportamiento de lesiones inaccesibles sin una intervención invasiva arriesgada. Sin embargo, explotar la potente pero a menudo latente información contenida en la IRM es una tarea muy complicada, que requiere técnicas de análisis computacional inteligente. Los tumores del sistema nervioso central son una de las enfermedades más críticas estudiadas a través de IRM. Específicamente, el glioblastoma representa un gran desafío, ya que, hasta la fecha, continua siendo un cáncer letal que carece de una terapia satisfactoria. Del conjunto de características que hacen del glioblastoma un tumor tan agresivo, un aspecto particular que ha sido ampliamente estudiado es su heterogeneidad vascular. La fuerte proliferación vascular del glioblastoma, así como su robusta angiogénesis han sido consideradas responsables de la alta letalidad de esta neoplasia. Esta tesis se centra en la investigación y desarrollo del método Hemodynamic Tissue Signature (HTS): un método de AA no supervisado para describir la heterogeneidad vascular de los glioblastomas mediante el análisis de perfusión por IRM. El método HTS se basa en el concepto de hábitat, que se define como una subregión de la lesión con un perfil de IRM que describe un comportamiento fisiológico concreto. El método HTS delinea cuatro hábitats en el glioblastoma: el hábitat HAT, como la región más perfundida del tumor con captación de contraste; el hábitat LAT, como la región del tumor con un perfil angiogénico más bajo; el hábitat IPE, como la región adyacente al tumor con índices de perfusión elevados; y el hábitat VPE, como el edema restante de la lesión con el perfil de perfusión más bajo. La investigación y desarrollo de este método ha originado una serie de contribuciones enmarcadas en esta tesis. Primero, para verificar la fiabilidad de los métodos de AA no supervisados en la extracción de patrones de IRM, se realizó una comparativa para la tarea de segmentación de gliomas de grado alto. Segundo, se propuso un algoritmo de AA no supervisado dentro de la familia de los Spatially Varying Finite Mixture Models. El algoritmo propone una densidad a priori basada en un Markov Random Field combinado con la función probabilística Non-Local Means, para codificar la idea de que píxeles vecinos tienden a pertenecer al mismo objeto. Tercero, se presenta el método HTS para describir la heterogeneidad vascular del glioblastoma. El método se ha aplicado a casos reales en una cohorte local de un solo centro y en una cohorte internacional de más de 180 pacientes de 7 centros europeos. Se llevó a cabo una evaluación exhaustiva del método para medir el potencial pronóstico de los hábitats HTS. Finalmente, la tecnología desarrollada en la tesis se ha integrado en la plataforma online ONCOhabitats (https://www.oncohabitats.upv.es). La plataforma ofrece dos servicios: 1) segmentación de tejidos de glioblastoma, y 2) evaluación de la heterogeneidad vascular del tumor mediante el método HTS. Los resultados de esta tesis han sido publicados en diez contribuciones científicas, incluyendo revistas y conferencias de alto impacto en las áreas de Informática Médica, Estadística y Probabilidad, Radiología y Medicina Nuclear y Aprendizaje Automático. También se emitió una patente industrial registrada en España, Europa y EEUU. Finalmente, las ideas originales concebidas en esta tesis dieron lugar a la creación de ONCOANALYTICS CDX, una empresa enmarcada en el modelo de negocio de los companion diagnostics de compuestos farmacéuticos.[EN] The future of medical imaging is linked to Artificial Intelligence (AI). The manual analysis of medical images is nowadays an arduous, error-prone and often unaffordable task for humans, which has caught the attention of the Machine Learning (ML) community. Magnetic Resonance Imaging (MRI) provides us with a wide variety of rich representations of the morphology and behavior of lesions completely inaccessible without a risky invasive intervention. Nevertheless, harnessing the powerful but often latent information contained in MRI acquisitions is a very complicated task, which requires computational intelligent analysis techniques. Central nervous system tumors are one of the most critical diseases studied through MRI. Specifically, glioblastoma represents a major challenge, as it remains a lethal cancer that, to date, lacks a satisfactory therapy. Of the entire set of characteristics that make glioblastoma so aggressive, a particular aspect that has been widely studied is its vascular heterogeneity. The strong vascular proliferation of glioblastomas, as well as their robust angiogenesis and extensive microvasculature heterogeneity have been claimed responsible for the high lethality of the neoplasm. This thesis focuses on the research and development of the Hemodynamic Tissue Signature (HTS) method: an unsupervised ML approach to describe the vascular heterogeneity of glioblastomas by means of perfusion MRI analysis. The HTS builds on the concept of habitats. A habitat is defined as a sub-region of the lesion with a particular MRI profile describing a specific physiological behavior. The HTS method delineates four habitats within the glioblastoma: the HAT habitat, as the most perfused region of the enhancing tumor; the LAT habitat, as the region of the enhancing tumor with a lower angiogenic profile; the potentially IPE habitat, as the non-enhancing region adjacent to the tumor with elevated perfusion indexes; and the VPE habitat, as the remaining edema of the lesion with the lowest perfusion profile. The research and development of the HTS method has generated a number of contributions to this thesis. First, in order to verify that unsupervised learning methods are reliable to extract MRI patterns to describe the heterogeneity of a lesion, a comparison among several unsupervised learning methods was conducted for the task of high grade glioma segmentation. Second, a Bayesian unsupervised learning algorithm from the family of Spatially Varying Finite Mixture Models is proposed. The algorithm integrates a Markov Random Field prior density weighted by the probabilistic Non-Local Means function, to codify the idea that neighboring pixels tend to belong to the same semantic object. Third, the HTS method to describe the vascular heterogeneity of glioblastomas is presented. The HTS method has been applied to real cases, both in a local single-center cohort of patients, and in an international retrospective cohort of more than 180 patients from 7 European centers. A comprehensive evaluation of the method was conducted to measure the prognostic potential of the HTS habitats. Finally, the technology developed in this thesis has been integrated into an online open-access platform for its academic use. The ONCOhabitats platform is hosted at https://www.oncohabitats.upv.es, and provides two main services: 1) glioblastoma tissue segmentation, and 2) vascular heterogeneity assessment of glioblastomas by means of the HTS method. The results of this thesis have been published in ten scientific contributions, including top-ranked journals and conferences in the areas of Medical Informatics, Statistics and Probability, Radiology & Nuclear Medicine and Machine Learning. An industrial patent registered in Spain, Europe and EEUU was also issued. Finally, the original ideas conceived in this thesis led to the foundation of ONCOANALYTICS CDX, a company framed into the business model of companion diagnostics for pharmaceutical compounds.[CA] El futur de la imatge mèdica està lligat a la intel·ligència artificial. L'anàlisi manual d'imatges mèdiques és hui dia una tasca àrdua, propensa a errors i sovint inassequible per als humans, que ha cridat l'atenció de la comunitat d'Aprenentatge Automàtic (AA). La Imatge per Ressonància Magnètica (IRM) ens proporciona una àmplia varietat de representacions de la morfologia i el comportament de lesions inaccessibles sense una intervenció invasiva arriscada. Tanmateix, explotar la potent però sovint latent informació continguda a les adquisicions de IRM esdevé una tasca molt complicada, que requereix tècniques d'anàlisi computacional intel·ligent. Els tumors del sistema nerviós central són una de les malalties més crítiques estudiades a través de IRM. Específicament, el glioblastoma representa un gran repte, ja que, fins hui, continua siguent un càncer letal que manca d'una teràpia satisfactòria. Del conjunt de característiques que fan del glioblastoma un tumor tan agressiu, un aspecte particular que ha sigut àmpliament estudiat és la seua heterogeneïtat vascular. La forta proliferació vascular dels glioblastomes, així com la seua robusta angiogènesi han sigut considerades responsables de l'alta letalitat d'aquesta neoplàsia. Aquesta tesi es centra en la recerca i desenvolupament del mètode Hemodynamic Tissue Signature (HTS): un mètode d'AA no supervisat per descriure l'heterogeneïtat vascular dels glioblastomas mitjançant l'anàlisi de perfusió per IRM. El mètode HTS es basa en el concepte d'hàbitat, que es defineix com una subregió de la lesió amb un perfil particular d'IRM, que descriu un comportament fisiològic concret. El mètode HTS delinea quatre hàbitats dins del glioblastoma: l'hàbitat HAT, com la regió més perfosa del tumor amb captació de contrast; l'hàbitat LAT, com la regió del tumor amb un perfil angiogènic més baix; l'hàbitat IPE, com la regió adjacent al tumor amb índexs de perfusió elevats, i l'hàbitat VPE, com l'edema restant de la lesió amb el perfil de perfusió més baix. La recerca i desenvolupament del mètode HTS ha originat una sèrie de contribucions emmarcades a aquesta tesi. Primer, per verificar la fiabilitat dels mètodes d'AA no supervisats en l'extracció de patrons d'IRM, es va realitzar una comparativa en la tasca de segmentació de gliomes de grau alt. Segon, s'ha proposat un algorisme d'AA no supervisat dintre de la família dels Spatially Varying Finite Mixture Models. L'algorisme proposa un densitat a priori basada en un Markov Random Field combinat amb la funció probabilística Non-Local Means, per a codificar la idea que els píxels veïns tendeixen a pertànyer al mateix objecte semàntic. Tercer, es presenta el mètode HTS per descriure l'heterogeneïtat vascular dels glioblastomas. El mètode HTS s'ha aplicat a casos reals en una cohort local d'un sol centre i en una cohort internacional de més de 180 pacients de 7 centres europeus. Es va dur a terme una avaluació exhaustiva del mètode per mesurar el potencial pronòstic dels hàbitats HTS. Finalment, la tecnologia desenvolupada en aquesta tesi s'ha integrat en una plataforma online ONCOhabitats (https://www.oncohabitats.upv.es). La plataforma ofereix dos serveis: 1) segmentació dels teixits del glioblastoma, i 2) avaluació de l'heterogeneïtat vascular dels glioblastomes mitjançant el mètode HTS. Els resultats d'aquesta tesi han sigut publicats en deu contribucions científiques, incloent revistes i conferències de primer nivell a les àrees d'Informàtica Mèdica, Estadística i Probabilitat, Radiologia i Medicina Nuclear i Aprenentatge Automàtic. També es va emetre una patent industrial registrada a Espanya, Europa i els EEUU. Finalment, les idees originals concebudes en aquesta tesi van donar lloc a la creació d'ONCOANALYTICS CDX, una empresa emmarcada en el model de negoci dels companion diagnostics de compostos farmacèutics.En este sentido quiero agradecer a las diferentes instituciones y estructuras de financiación de investigación que han contribuido al desarrollo de esta tesis. En especial quiero agradecer a la Universitat Politècnica de València, donde he desarrollado toda mi carrera acadèmica y científica, así como al Ministerio de Ciencia e Innovación, al Ministerio de Economía y Competitividad, a la Comisión Europea, al EIT Health Programme y a la fundación Caixa ImpulseJuan Albarracín, J. (2020). Unsupervised learning for vascular heterogeneity assessment of glioblastoma based on magnetic resonance imaging: The Hemodynamic Tissue Signature [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/149560TESI

    Contributions to Ensemble Classifiers with Image Analysis Applications

    Get PDF
    134 p.Ésta tesis tiene dos aspectos fundamentales, por un lado, la propuesta denuevas arquitecturas de clasificadores y, por otro, su aplicación a el análisis deimagen.Desde el punto de vista de proponer nuevas arquitecturas de clasificaciónla tesis tiene dos contribucciones principales. En primer lugar la propuestade un innovador ensemble de clasificadores basado en arquitecturas aleatorias,como pueden ser las Extreme Learning Machines (ELM), Random Forest (RF) yRotation Forest, llamado Hybrid Extreme Rotation Forest (HERF) y su mejoraAnticipative HERF (AHERF) que conlleva una selección del modelo basada enel rendimiento de predicción para cada conjunto de datos específico. Ademásde lo anterior, proveemos una prueba formal tanto del AHERF, como de laconvergencia de los ensembles de regresores ELMs que mejoran la usabilidad yreproducibilidad de los resultados.En la vertiente de aplicación hemos estado trabajando con dos tipos de imágenes:imágenes hiperespectrales de remote sensing, e imágenes médicas tanto depatologías específicas de venas de sangre como de imágenes para el diagnósticode Alzheimer. En todos los casos los ensembles de clasificadores han sido la herramientacomún además de estrategias especificas de aprendizaje activo basadasen dichos ensembles de clasificadores. En el caso concreto de la segmentaciónde vasos sanguíneos nos hemos enfrentado con problemas, uno relacionado conlos trombos del Aneurismas de Aorta Abdominal en imágenes 3D de tomografíacomputerizada y el otro la segmentación de venas sangineas en la retina. Losresultados en ambos casos en términos de rendimiento en clasificación y ahorrode tiempo en la segmentación humana nos permiten recomendar esos enfoquespara la práctica clínica.Chapter 1Background y contribuccionesDado el espacio limitado para realizar el resumen de la tesis hemos decididoincluir un resumen general con los puntos más importantes, una pequeña introducciónque pudiera servir como background para entender los conceptos básicosde cada uno de los temas que hemos tocado y un listado con las contribuccionesmás importantes.1.1 Ensembles de clasificadoresLa idea de los ensembles de clasificadores fue propuesta por Hansen y Salamon[4] en el contexto del aprendizaje de las redes neuronales artificiales. Sutrabajo mostró que un ensemble de redes neuronales con un esquema de consensogrupal podía mejorar el resultado obtenido con una única red neuronal.Los ensembles de clasificadores buscan obtener unos resultados de clasificaciónmejores combinando clasificadores débiles y diversos [8, 9]. La propuesta inicialde ensemble contenía una colección homogena de clasificadores individuales. ElRandom Forest es un claro ejemplo de ello, puesto que combina la salida de unacolección de árboles de decisión realizando una votación por mayoría [2, 3], yse construye utilizando una técnica de remuestreo sobre el conjunto de datos ycon selección aleatoria de variables.2CHAPTER 1. BACKGROUND Y CONTRIBUCCIONES 31.2 Aprendizaje activoLa construcción de un clasificador supervisado consiste en el aprendizaje de unaasignación de funciones de datos en un conjunto de clases dado un conjunto deentrenamiento etiquetado. En muchas situaciones de la vida real la obtenciónde las etiquetas del conjunto de entrenamiento es costosa, lenta y propensa aerrores. Esto hace que la construcción del conjunto de entrenamiento sea unatarea engorrosa y requiera un análisis manual exaustivo de la imagen. Esto se realizanormalmente mediante una inspección visual de las imágenes y realizandoun etiquetado píxel a píxel. En consecuencia el conjunto de entrenamiento esaltamente redundante y hace que la fase de entrenamiento del modelo sea muylenta. Además los píxeles ruidosos pueden interferir en las estadísticas de cadaclase lo que puede dar lugar a errores de clasificación y/o overfitting. Por tantoes deseable que un conjunto de entrenamiento sea construido de una manera inteligente,lo que significa que debe representar correctamente los límites de clasemediante el muestreo de píxeles discriminantes. La generalización es la habilidadde etiquetar correctamente datos que no se han visto previamente y quepor tanto son nuevos para el modelo. El aprendizaje activo intenta aprovecharla interacción con un usuario para proporcionar las etiquetas de las muestrasdel conjunto de entrenamiento con el objetivo de obtener la clasificación másprecisa utilizando el conjunto de entrenamiento más pequeño posible.1.3 AlzheimerLa enfermedad de Alzheimer es una de las causas más importantes de discapacidaden personas mayores. Dado el envejecimiento poblacional que es una realidaden muchos países, con el aumento de la esperanza de vida y con el aumentodel número de personas mayores, el número de pacientes con demencia aumentarátambién. Debido a la importancia socioeconómica de la enfermedad enlos países occidentales existe un fuerte esfuerzo internacional focalizado en laenfermedad del Alzheimer. En las etapas tempranas de la enfermedad la atrofiacerebral suele ser sutil y está espacialmente distribuida por diferentes regionescerebrales que incluyen la corteza entorrinal, el hipocampo, las estructuras temporaleslateral e inferior, así como el cíngulo anterior y posterior. Son muchoslos esfuerzos de diseño de algoritmos computacionales tratando de encontrarbiomarcadores de imagen que puedan ser utilizados para el diagnóstico no invasivodel Alzheimer y otras enfermedades neurodegenerativas.CHAPTER 1. BACKGROUND Y CONTRIBUCCIONES 41.4 Segmentación de vasos sanguíneosLa segmentación de los vasos sanguíneos [1, 7, 6] es una de las herramientas computacionalesesenciales para la evaluación clínica de las enfermedades vasculares.Consiste en particionar un angiograma en dos regiones que no se superponen:la región vasculares y el fondo. Basándonos en los resultados de dicha particiónse pueden extraer, modelar, manipular, medir y visualizar las superficies vasculares.Éstas estructuras son muy útiles y juegan un rol muy imporntate en lostratamientos endovasculares de las enfermedades vasculares. Las enfermedadesvasculares son una de las principales fuentes de morbilidad y mortalidad en todoel mundo.Aneurisma de Aorta Abdominal El Aneurisma de Aorta Abdominal (AAA)es una dilatación local de la Aorta que ocurre entre las arterias renal e ilíaca. Eldebilitamiento de la pared de la aorta conduce a su deformación y la generaciónde un trombo. Generalmente, un AAA se diagnostica cuando el diámetro anterioposteriormínimo de la aorta alcanza los 3 centímetros [5]. La mayoría delos aneurismas aórticos son asintomáticos y sin complicaciones. Los aneurismasque causan los síntomas tienen un mayor riesgo de ruptura. El dolor abdominalo el dolor de espalda son las dos principales características clínicas que sugiereno bien la reciente expansión o fugas. Las complicaciones son a menudo cuestiónde vida o muerte y pueden ocurrir en un corto espacio de tiempo. Por lo tanto,el reto consiste en diagnosticar lo antes posible la aparición de los síntomas.Imágenes de Retina La evaluación de imágenes del fondo del ojo es una herramientade diagnóstico de la patología vascular y no vascular. Dicha inspecciónpuede revelar hipertensión, diabetes, arteriosclerosis, enfermedades cardiovascularese ictus. Los principales retos para la segmentación de vasos retinianos son:(1) la presencia de lesiones que se pueden interpretar de forma errónea comovasos sanguíneos; (2) bajo contraste alrededor de los vasos más delgados, (3)múltiples escalas de tamaño de los vasos.1.5 ContribucionesÉsta tesis tiene dos tipos de contribuciones. Contribuciones computacionales ycontribuciones orientadas a una aplicación o prácticas.CHAPTER 1. BACKGROUND Y CONTRIBUCCIONES 5Desde un punto de vista computacional las contribuciones han sido las siguientes:¿ Un nuevo esquema de aprendizaje activo usando Random Forest y el cálculode la incertidumbre que permite una segmentación de imágenes rápida,precisa e interactiva.¿ Hybrid Extreme Rotation Forest.¿ Adaptative Hybrid Extreme Rotation Forest.¿ Métodos de aprendizaje semisupervisados espectrales-espaciales.¿ Unmixing no lineal y reconstrucción utilizando ensembles de regresoresELM.Desde un punto de vista práctico:¿ Imágenes médicas¿ Aprendizaje activo combinado con HERF para la segmentación deimágenes de tomografía computerizada.¿ Mejorar el aprendizaje activo para segmentación de imágenes de tomografíacomputerizada con información de dominio.¿ Aprendizaje activo con el clasificador bootstrapped dendritic aplicadoa segmentación de imágenes médicas.¿ Meta-ensembles de clasificadores para detección de Alzheimer conimágenes de resonancia magnética.¿ Random Forest combinado con aprendizaje activo para segmentaciónde imágenes de retina.¿ Segmentación automática de grasa subcutanea y visceral utilizandoresonancia magnética.¿ Imágenes hiperespectrales¿ Unmixing no lineal y reconstrucción utilizando ensembles de regresoresELM.¿ Métodos de aprendizaje semisupervisados espectrales-espaciales concorrección espacial usando AHERF.¿ Método semisupervisado de clasificación utilizando ensembles de ELMsy con regularización espacial
    corecore