21 research outputs found

    Topology-Preserving Automatic Labeling of Coronary Arteries via Anatomy-aware Connection Classifier

    Full text link
    Automatic labeling of coronary arteries is an essential task in the practical diagnosis process of cardiovascular diseases. For experienced radiologists, the anatomically predetermined connections are important for labeling the artery segments accurately, while this prior knowledge is barely explored in previous studies. In this paper, we present a new framework called TopoLab which incorporates the anatomical connections into the network design explicitly. Specifically, the strategies of intra-segment feature aggregation and inter-segment feature interaction are introduced for hierarchical segment feature extraction. Moreover, we propose the anatomy-aware connection classifier to enable classification for each connected segment pair, which effectively exploits the prior topology among the arteries with different categories. To validate the effectiveness of our method, we contribute high-quality annotations of artery labeling to the public orCaScore dataset. The experimental results on both the orCaScore dataset and an in-house dataset show that our TopoLab has achieved state-of-the-art performance.Comment: Accepted by MICCAI 202

    Semantic Segmentation to Extract Coronary Arteries in Invasive Coronary Angiograms

    Get PDF
    Accurate semantic segmentation of each coronary artery using invasive coronary angiography (ICA) is important for stenosis assessment and coronary artery disease (CAD) diagnosis. In this paper, we propose a multi-step semantic segmentation algorithm based on analyzing arterial segments extracted from ICAs. The proposed algorithm firstly extracts the entire arterial binary mask (binary vascular tree) using a deep learning-based method. Then we extract the centerline of the binary vascular tree and separate it into different arterial segments. Finally, by extracting the underlying arterial topology, position, and pixel features, we construct a powerful coronary artery segment classifier based on a support vector machine. Each arterial segment is classified into the left coronary artery (LCA), left anterior descending (LAD), and other types of arterial segments. The proposed method was tested on a dataset with 225 ICAs and achieved a mean accuracy of 70.33% for the multi-class artery classification and a mean intersection over union of 0.6868 for semantic segmentation of arteries. The experimental results show the effectiveness of the proposed algorithm, which provides impressive performance for analyzing the individual arteries in ICAs

    Semantic Segmentation to Extract Coronary Arteries in Invasive Coronary Angiograms

    Get PDF
    Accurate semantic segmentation of each coronary artery using invasive coronary angiography (ICA) is important for stenosis assessment and coronary artery disease (CAD) diagnosis. In this paper, we propose a multi-step semantic segmentation algorithm based on analyzing arterial sements extraced from ICAs. The proposed algorithm firstly extracts the entire arterial binary mask (binary vascular tree) using a deep learning-based method. Then we extract the centerline of the binary vascular tree and separate it into different arterial segments. Finally, by extracting the underlyingarterial topology, position, and pixel features, we construct a powerful coronary artery segment classifier based on a support vector machine. Each arterial segment is classified into the left coronary artery (LCA), left anterior descending (LAD), and other types of arterial segments. The proposed method was tested on a dataset with 225 ICAs and achieved a mean accuracy of 70.33% for the multi-class artery classification and a mean intersection over union of 0.6868 for semantic segmentation of arteries. The experimental results show the effectiveness of the proposed algorithm, which provides impressive performance for analyzing the individual arteries in ICAs

    Handling Label Uncertainty on the Example of Automatic Detection of Shepherd's Crook RCA in Coronary CT Angiography

    Full text link
    Coronary artery disease (CAD) is often treated minimally invasively with a catheter being inserted into the diseased coronary vessel. If a patient exhibits a Shepherd's Crook (SC) Right Coronary Artery (RCA) - an anatomical norm variant of the coronary vasculature - the complexity of this procedure is increased. Automated reporting of this variant from coronary CT angiography screening would ease prior risk assessment. We propose a 1D convolutional neural network which leverages a sequence of residual dilated convolutions to automatically determine this norm variant from a prior extracted vessel centerline. As the SC RCA is not clearly defined with respect to concrete measurements, labeling also includes qualitative aspects. Therefore, 4.23% samples in our dataset of 519 RCA centerlines were labeled as unsure SC RCAs, with 5.97% being labeled as sure SC RCAs. We explore measures to handle this label uncertainty, namely global/model-wise random assignment, exclusion, and soft label assignment. Furthermore, we evaluate how this uncertainty can be leveraged for the determination of a rejection class. With our best configuration, we reach an area under the receiver operating characteristic curve (AUC) of 0.938 on confident labels. Moreover, we observe an increase of up to 0.020 AUC when rejecting 10% of the data and leveraging the labeling uncertainty information in the exclusion process.Comment: Accepted at ISBI 202

    Anatomical labeling of intracranial arteries with deep learning in patients with cerebrovascular disease

    Get PDF
    Brain arteries are routinely imaged in the clinical setting by various modalities, e.g., time-of-flight magnetic resonance angiography (TOF-MRA). These imaging techniques have great potential for the diagnosis of cerebrovascular disease, disease progression, and response to treatment. Currently, however, only qualitative assessment is implemented in clinical applications, relying on visual inspection. While manual or semi-automated approaches for quantification exist, such solutions are impractical in the clinical setting as they are time-consuming, involve too many processing steps, and/or neglect image intensity information. In this study, we present a deep learning-based solution for the anatomical labeling of intracranial arteries that utilizes complete information from 3D TOF-MRA images. We adapted and trained a state-of-the-art multi-scale Unet architecture using imaging data of 242 patients with cerebrovascular disease to distinguish 24 arterial segments. The proposed model utilizes vessel-specific information as well as raw image intensity information, and can thus take tissue characteristics into account. Our method yielded a performance of 0.89 macro F1 and 0.90 balanced class accuracy (bAcc) in labeling aggregated segments and 0.80 macro F1 and 0.83 bAcc in labeling detailed arterial segments on average. In particular, a higher F1 score than 0.75 for most arteries of clinical interest for cerebrovascular disease was achieved, with higher than 0.90 F1 scores in the larger, main arteries. Due to minimal pre-processing, simple usability, and fast predictions, our method could be highly applicable in the clinical setting

    ImageCAS: A Large-Scale Dataset and Benchmark for Coronary Artery Segmentation based on Computed Tomography Angiography Images

    Full text link
    Cardiovascular disease (CVD) accounts for about half of non-communicable diseases. Vessel stenosis in the coronary artery is considered to be the major risk of CVD. Computed tomography angiography (CTA) is one of the widely used noninvasive imaging modalities in coronary artery diagnosis due to its superior image resolution. Clinically, segmentation of coronary arteries is essential for the diagnosis and quantification of coronary artery disease. Recently, a variety of works have been proposed to address this problem. However, on one hand, most works rely on in-house datasets, and only a few works published their datasets to the public which only contain tens of images. On the other hand, their source code have not been published, and most follow-up works have not made comparison with existing works, which makes it difficult to judge the effectiveness of the methods and hinders the further exploration of this challenging yet critical problem in the community. In this paper, we propose a large-scale dataset for coronary artery segmentation on CTA images. In addition, we have implemented a benchmark in which we have tried our best to implement several typical existing methods. Furthermore, we propose a strong baseline method which combines multi-scale patch fusion and two-stage processing to extract the details of vessels. Comprehensive experiments show that the proposed method achieves better performance than existing works on the proposed large-scale dataset. The benchmark and the dataset are published at https://github.com/XiaoweiXu/ImageCAS-A-Large-Scale-Dataset-and-Benchmark-for-Coronary-Artery-Segmentation-based-on-CT.Comment: 17 pages, 12 figures, 4 table

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table
    corecore