16 research outputs found

    Automated analysis of human cochlea shape variability from segmented ÎŒCT images

    Get PDF
    International audienceThe aim of this study is to define an automated and reproducible framework for cochlear anatomical analysis from high-resolution segmented images and to provide a comprehensive and objective shape variability study suitable for cochlear implant design and surgery planning. For the scala tympani (ST), the scala vestibuli (SV) and the whole cochlea, the variability of the arc lengths and the radial and longitudinal components of the lateral, central and modiolar paths are studied. The robustness of the automated cochlear coordinate system estimation is validated with synthetic and real data. Cochlear cross-sections are statistically analyzed using area, height and width measurements. The cross-section tilt angle is objectively measured and this data documents a significant feature for occurrence of surgical trauma

    Intrinsic Measures and Shape Analysis of the Intratemporal Facial Nerve

    Get PDF
    Hypothesis: To characterize anatomical measurements and shape variation of the facial nerve within the temporal bone, and to create statistical shape models (SSMs) to enhance knowledge of temporal bone anatomy and aid in automated segmentation. Background: The facial nerve is a fundamental structure in otologic surgery, and detailed anatomic knowledge with surgical experience are needed to avoid its iatrogenic injury. Trainees can use simulators to practice surgical techniques, however manual segmentation required to develop simulations can be time consuming. Consequently, automated segmentation algorithms have been developed that use atlas registration, SSMs, and deep learning. Methods: Forty cadaveric temporal bones were evaluated using three dimensional microCT (ÎŒCT) scans. The image sets were aligned using rigid fiducial registration, and the facial nerve canals were segmented and analyzed. Detailed measurements were performed along the various sections of the nerve. Shape variability was then studied using two SSMs: one involving principal component analysis (PCA) and a second using the Statismo framework. Results: Measurements of the nerve canal revealed mean diameters and lengths of the labyrinthine, tympanic, and mastoid segments. The landmark PCA analysis demonstrated significant shape variation along one mode at the distal tympanic segment, and along three modes at the distal mastoid segment. The Statismo shape model was consistent with this analysis, emphasizing the variability at the mastoid segment. The models were made publicly available to aid in future research and foster collaborative work. Conclusion: The facial nerve exhibited statistical variation within the temporal bone. The models used form a framework for automated facial nerve segmentation and simulation for trainees

    Patient-specific estimation of detailed cochlear shape from clinical CT images

    Get PDF
    PURPOSE A personalized estimation of the cochlear shape can be used to create computational anatomical models to aid cochlear implant (CI) surgery and CI audio processor programming ultimately resulting in improved hearing restoration. The purpose of this work is to develop and test a method for estimation of the detailed patient-specific cochlear shape from CT images. METHODS From a collection of temporal bone [Formula: see text]CT images, we build a cochlear statistical deformation model (SDM), which is a description of how a human cochlea deforms to represent the observed anatomical variability. The model is used for regularization of a non-rigid image registration procedure between a patient CT scan and a [Formula: see text]CT image, allowing us to estimate the detailed patient-specific cochlear shape. RESULTS We test the accuracy and precision of the predicted cochlear shape using both [Formula: see text]CT and CT images. The evaluation is based on classic generic metrics, where we achieve competitive accuracy with the state-of-the-art methods for the task. Additionally, we expand the evaluation with a few anatomically specific scores. CONCLUSIONS The paper presents the process of building and using the SDM of the cochlea. Compared to current best practice, we demonstrate competitive performance and some useful properties of our method

    Multi-Atlas Segmentation of the Facial Nerve

    Get PDF
    Medical image segmentation is an important step to identify the shape and position of patient anatomy prior to surgical simulation, surgical rehearsal, and surgical planning. It is crucial that the facial nerve (FN) is segmented accurately as damage to this nerve can severely impact facial expression, speech, and taste. Manual segmentation provides accurate results but is time-consuming and labor-intensive; semi-automatic methods of segmentation are more feasible in a clinical setting and can provide accurate results with minimal user involvement. The objective of this work was to create a novel, open-source, multi-atlas based segmentation algorithm of the entire FN requiring minimal user intervention. Twenty-eight temporal bones were segmented producing an average Dice metric of 0.76 and an average Hausdorff distance of 0.17 mm which is similar to previously published algorithms. These results indicate that this segmentation approach can accurately segment the FN and greatly reduce time spent with manual segmentation

    Micro-CT of the human ossicular chain: Statistical shape modeling and implications for otologic surgery

    Get PDF
    The ossicular chain is a middle ear structure consisting of the small incus, malleus and stapes bones, which transmit tympanic membrane vibrations caused by sound to the inner ear. Despite being shown to be highly variable in shape, there are very few morphological studies of the ossicles. The objective of this study was to use a large sample of cadaveric ossicles to create a set of three-dimensional models and study their statistical variance. Thirty-three cadaveric temporal bone samples were scanned using micro-computed tomography (ÎŒCT) and segmented. Statistical shape models (SSMs) were then made for each ossicle to demonstrate the divergence of morphological features. Results revealed that ossicles were most likely to vary in overall size, but that more specific feature variability was found at the manubrium of the malleus, the long process and lenticular process of the incus, and the crura and footplate of the stapes. By analyzing samples as whole ossicular chains, it was revealed that when fixed at the malleus, changes along the chain resulted in a wide variety of final stapes positions. This is the first known study to create high-quality, three-dimensional SSMs of the human ossicles. This information can be used to guide otological surgical training and planning, inform ossicular prosthesis development, and assist with other ossicular studies and applications by improving automated segmentation algorithms. All models have been made publicly available

    Free-form image registration of human cochlear ÎŒCT data using skeleton similarity as anatomical prior

    Get PDF
    AbstractBetter understanding of the anatomical variability of the human cochlear is important for the design and function of Cochlear Implants. Proper non-rigid alignment of high-resolution cochlear ÎŒCT data is a challenge for the typical cubic B-spline registration model. In this paper we study one way of incorporating skeleton-based similarity as an anatomical registration prior. We extract a centerline skeleton of the cochlear spiral, and generate corresponding parametric pseudo-landmarks between samples. These correspondences are included in the cost function of a typical cubic B-spline registration model to provide a more global guidance of the alignment. The resulting registrations are evaluated using different metrics for accuracy and model behavior, and compared to the results of a registration without the prior

    Automated Segmentation of Temporal Bone Structures

    Get PDF
    Mastoidectomy is a challenging surgical procedure that is difficult to perform and practice. As supplementation to current training techniques, surgical simulators have been developed with the ability to visualize and operate on temporal bone anatomy. Medical image segmentation is done to create three-dimensional models of anatomical structures for simulation. Manual segmentation is an accurate but time-consuming process that requires an expert to label each structure on images. An automatic method for segmentation would allow for more practical model creation. The objective of this work was to create an automated segmentation algorithm for structures of the temporal bone relevant to mastoidectomy. The first method explored was multi-atlas based segmentation of the sigmoid sinus which produced accurate and consistent results. In order to segment other structures and improve robustness and accuracy, two convolutional neural networks were compared. The convolutional neural network implementation produced results that were more accurate than previously published work
    corecore